

Empirical – A library of tools for scientific software development

	Authors:	Charles Ofria, Emily Dolson, Jason Stredwick

	GitHub:	https://github.com/mercere99/Empirical

Empirical is a library of tools for scientific software development with an
emphasis on being able to build web interfaces using Emscripten, vastly
improving the reproducibility of the project.

Emscripten is a C++ project though it uses Python for development
infrastructure.

The developer documentation is for contributing to the Emscripten project and
the user documentation is for those wanting to incorporate Emscripten within
their own projects.

Contents:

	The Empirical Library Documentation

	The Empirical Contributor Documentation

Index

The Empirical Library Documentation

Contents:

	Doxygen

	The Empirical D3 Wrapper Documentation

	Index

	Search Page

The Empirical D3 Wrapper Documentation

	Using Empirical’s D3.js Wrapper

	A Minimal Example
	C++ File

	HTML File

	CSS File

	Running your visualization

	Writing Your Own Visualization
	Selections

	Binding Data

	Changing Elements’ Traits

	Transitions

	Scales and Axes

	Passing Functions as Arguments

	Under the Hood (for the curious, developers, and people trying to do weird stuff)

	D3 Wrapper API
	Basic D3 Objects

	Selections and Transitions

	Scales

	Axes

	SVG Shapes and Paths

	Datasets

Using Empirical’s D3.js Wrapper

If you’re writing scientific code that runs on the web, you’ll probably want to visualize the
results (either as your program runs or after it’s done). To make this as easy as possible,
Empirical includes a C++ wrapper for d3.js, a wildly popular and powerful Javascript data
visualization library. Using the wrapper, you can create visualizations directly from C++.

At a base level, the wrapper provides C++ equivalents for all objects, methods, and functions in
d3.js. So, if you’re used to using d3, using the wrapper should be very similar. However, d3.js is
a library that you use to build visualizations rather than a library of pre-built visualizations (a
fact that has lead to the proliferation of many very similar libraries built on top of d3 that
provide pre-built graphs). Where possible, we have tried to provide short-cut functions and
pre-built graph objects in an effort to help those new to Javascript visualization get started
fast. This is an ongoing process and we’re always open to suggestions!

A Minimal Example

D3 visualizations run in web browsers. That means that to use this wrapper, you need to compile
your C++ code to Javascript, using Emscripten. To see the visualization, you need to have an html
file that loads
your Javascript. Then you need to open that html file in a web browser. Optionally, you might also
have a CSS file that contains rules for how elements of your web page should look.

This example assumes the following file structure:

[image: Directory structure for this example]
Here are the basics of what you need in order to get up and running. The easiest way to make a
visualization is to use one of the pre-built visualizations. Later we’ll get into writing your own.
Either way, you’ll need:

C++ File

The C++ file that you’ll compile to Javascript. For this example, we’ll use the
Empirical web module to build the whole web page:

// Always include web_init.h when you're doing web stuff -
// it makes sure everything gets initialized right
#include "../Empirical/web/web_init.h"

// We're using a document object to arrange everything
// we're drawing.
#include "../Empirical/web/Document.h"

//Contains pre-built visualizations
#include "../Empirical/web/d3/visualizations.h"

// The document object is in charge of all of the Javascript
// and html that goes in the <div> element in the html. It
// gets created before main so that it stays in scope
// when main ends
emp::web::Document doc("my_visualization");

// The visualization object needs to be declared globally for
// the same reason. For this example, we'll use a
// LineageVisualization, which is a type of D3 visualization
// object. It takes two argumenets: the width and the height
// of the visualization.
emp::web::LineageVisualization lineage_viz(6000, 5000);

int main {
 // Add visualization to the document
 doc << lineage_viz;

 // Load pre-existing data file, example.json,
 // into the visualization
 lineage_viz.LoadDataFromFile("example.json");
}

Now we need to compile it:

emcc my_program.cc -o my_program.js \ #.js extension tells Emscripten to compile to Javascript
 --js-library ../Empirical/web/library_emp.js \ #Include the Empirical Javascript library
 --js-library ../Empirical/web/d3/library_d3.js \ #Include Javascript library for D3 wrapper
 -s EXPORTED_FUNCTIONS="['_main', '_empCppCallback']" \ #Tells Emscripten what to export from C++
 -s ASSERTIONS=2 \ #Emscripten needs to know this
 -s DEMANGLE_SUPPORT=1 \ #Make names of variables in Javascript more readable
 -s TOTAL_MEMORY=67108864 \ #The exact number doesn't matter, but default is too small
 -s NO_EXIT_RUNTIME=1 \ #Make the page keep working after main() is done running
 -O3 -DNDEBUG #Turn on optimizations and turn off debugging (improves speed - only do this
 #once you're done debugging)

HTML File

To tell the browser what to do with your Javascript, you need an html file:

<!-- This is an html comment -->
<!DOCTYPE html>
<html>

 <!-- The head is for stuff that needs to get set up first,
 like metadata and styles -->
 <head>
 <title> My D3/Empirical visualization! </title>

 <!-- Optional - load a stylesheet -->
 <link rel="stylesheet" type="text/css" href="style_sheet.css" />
 </head>

 <!-- Everything else goes in the body -->
 <body>
 <!-- Include necessary javascript libraries
 (jquery, d3, and a d3 tooltip library) -->
 <script src="Empirical/web/jquery-1.11.2.min.js"></script>
 <script src="Empirical/web/d3/d3.min.js" charset="utf-8"></script>
 <script src="Empirical/web/d3/d3-tip.js" charset="utf-8"></script>

 <!-- Include the Javascript file you
 compiled your C++ code to -->
 <script src="my_program.js"></script>

 <!-- We told the emp::document that it was in charge of
 something called "my_visualization," so we need to create
 that element -->
 <div id="my_visualization"></div>

 </body>
</html>

CSS File

Optionally, a CSS file can be used to make elements look the way you want them to. Here’s one that
includes the necessary styles to make tooltips work (the html file above assumes it’s called
style_sheet.css, and is in the same directory as the html file):

.d3-tip {
 line-height: 1;
 font-weight: bold;
 padding: 12px;
 background: rgba(255, 255, 255, 0.8);
 color: #000;
 border-radius: 2px;
}

/* Creates a small triangle extender for the tooltip */
.d3-tip:after {
 box-sizing: border-box;
 display: inline;
 font-size: 10px;
 width: 100%;
 line-height: 1;
 color: rgba(255, 255, 255, 0.8);
 content: "\25BC";
 position: absolute;
 text-align: center;
}

/* Style northward tooltips differently */
.d3-tip.n:after {
 margin: -1px 0 0 0;
 top: 100%;
 left: 0;
}

Running your visualization

Now to open up the page in a browser! Some browsers will let you open the page up directly, but some will
complain about the fact that you’re trying to access a file on your computer (example.json) with
Javascript. The easiest way around this is with the Python simpleHTTPServer library. If you’re using
Python 2.x, run the following command from the directory containing your html file:

python -m SimpleHTTPServer

[image: Using SimpleHTTPServer with Python2]
If you’re running Python 3.x, use this command instead:

python -m http.server

[image: Using SimpleHTTPServer with Python3]
You can now open a browser to the server (http://localhost:8000, replacing 8000 with whatever
number was after “port” in the output from the command). You should see a list of file names
in the directory your terminal was open to when you ran the HTTP Server command (unless you
happen to have a file named index.html, in which case you’ll see the contents of that file).
Assuming you ran this command from the “example” directory in the directory structure shown above,
you should see “my_html.html” (or whatever you called your html file) on the list. Click on it.

Ta-da! There’s your visualization.

It’s convenient to have a visualization of data you’ve already generated, but the real power of
D3 visualization objects is that they can update in real time while your code runs. Here’s an
example C++ file that does that:

Example here

So that’s how you use out-of-the-box D3 visualizations in Empirical. Sometimes, though, you want
to do something new and exciting. Which brings us to the next section...

Writing Your Own Visualization

To build your own visualization, you need to understand a bit about how D3 works. Which
means you need to understand a bit about how Javascript and HTML work. I know, I know, the reason
you’re doing this all in C++ is that you want to avoid that, but I promise it’s worth it if you
want to make interactive visualizations that run on the web.

When your browser loads a website, it takes the html for that page and turns it into a tree:

[image: The tree your browser builds from an html file]
This tree is called the Document Object Model (DOM) and every set of tags (things
in angle brackets, like <head></head>) in the html is an element in it. Elements that are nested
inside other elements are represented as children of those elements in the tree. For instance, the
tree pictured above is representing the following html:

<!DOCTYPE html>
<html>
 <head>
 </head>
 <body>
 <div></div>
 <div></div>
 </body>
</html>

Javascript manipulates the DOM. It adds elements, it removes elements, it moves them around, and it
changes information about them. D3’s primary innovation is that it binds data to DOM elements
and lets you manipulate them based on that data. So, for instance, you can add a bunch of circle
elements representing all of your data points. With the D3 C++ wrapper, you’re doing the same thing,
but from C++.

Let’s take a tour of the main components of D3:

Selections

Selections are a way to work with groups of DOM elements. For instance, let’s say we have this html
file:

<!DOCTYPE html>
<html>

 <head>
 <title> My D3/Empirical visualization! </title>
 </head>

 <body>
 <!-- Include necessary javascript libraries
 (jquery, and d3) -->
 <script src="Empirical/web/jquery-1.11.2.min.js">
 </script>
 <script src="Empirical/web/d3/d3.min.js" charset="utf-8">
 </script>

 <!-- Include the Javascript file you compiled your
 C++ code to -->
 <script src="my_program.js"></script>

 <div id="my_visualization">
 <svg id = "graph">
 <circle cx="10" cy="10" r="5">
 <circle cx="20" cy="20" r="5">
 </svg>
 </div>

 </body>
</html>

Notice that we’ve added two types of elements: an SVG canvas and two circles. SVG stands for
Scalable Vector Graphics, which is the type of graphics the D3 works with (the other type of
graphics in Javascript are canvas graphics). In SVG graphics, every shape is its own element,
nested inside an SVG canvas element, so each shape can be manipulated independently. Here we
have two circle elements on our SVG canvas. We’ve set three attributes for the circles: the x
coordinate of their center points (cx), the y coordinate of their center points (cy), and their
radii (r).

If we want to operate on the circles, we can create a selection object that contains them:

//s is a container that contains both circle elements in the DOM
D3::Selection s = D3::SelectAll("circle");

We can then do things to all of the circles, like turn them purple:

// Set the "fill" style of everything in the s selection
// to "purple". "fill" is the color of the inside of a shape
// We'll talk more about modifying shapes a bit later
s.SetStyle("fill", "purple");

What if there are other circles outside the graph area that we don’t want to affect? We can
select an element with a specific id using the “#”, and then take a sub-selection by calling the
SelectAll method on it:

// Select will create a selection containing the first matching
// element, whereas SelectAll creates a selection containing
// all matching elements
D3::Selection svg = D3::Select("#graph");
D3::Selection graph_circles = svg.SelectAll("circle");

Advanced note: You can also make selections based on classes with D3::Select(.classname).

Binding Data

In D3, you bind data to selections. Usually, you are binding that data because you to visualize it
with SVG elements. So, usually the selection that we’re binding data to is a selection of some type
of SVG element on an SVG canvas. Something like this:

// Here we're using D3 to add the svg canvas to the document.
// We could also have Selected a pre-existing svg canvas that
// we put in the html, as we did in previous examples.
D3::Selection svg = D3::Select("body").Append("svg");

D3::Selection data_points = svg.SelectAll("circle");

Wait, what? Why did we select all of the circles on the SVG canvas when we know for a fact that
there aren’t any, because we just created it? It turns out that D3 pays attention to the type of
elements a selection contains. It knows that this is an empty selection for circles. So now we
can bind our data to this selection and D3 will understand that each point should correspond to a
circle. That means it can tell which data points don’t have corresponding circles (in this case all
of them). These data points make up the “enter selection,” which we can access with the
selection.enter() method. Most commonly, we use the enter selection to append elements for every
data point. Here’s what that all looks like together:

// Create example data
emp::vector<int> data = {1,2,3,4,5};

// Bind the data to the selection. We'll explain why this
// variable is named update in moment
D3::Selection update = data_points.Data(data);

// Get the enter selection (data without a DOM element)
D3::Selection enter = update.Enter();

// Give each data point in the enter selection a circle
// (as a shortcut, we could also have just used
// EnterAppend("circle") on the previous line)
enter.Append("circle");

Our circles won’t show up if we don’t give them cx, cy, and r attributes. Let’s set them to be
equal to each element’s corresponding data value. We can do this by passing SetAttr() a function
as its second object. Since passing functions around it much more common in Javascript than in C++,
we’ll talk a bit more about the ins and outs a bit later. For now, you just need to know that
SetAttr() accepts a function that takes the data bound to the element and returns the value you
want to set an attribute to. Technically,
Javascript is going to pass it three arguements, so you should write your C++ function to accept
three parameters, or your compiler will probably throw a tantrum:

// For now, we're going to use the simplest calllback function
// possible: one that returns exactly the data value that it
// was given.
std::function<int(int, int, int)> return_d = \
 [](int d, int i, int j){return d;};

// Set cx (the x coordinate of the circle's center), cy (the y
// coordinate of the circle's center), and r (the radius) to
// all be the return of the return_d function
// (i.e. the bound data)
enter.SetAttr("cx", return_d)
 .SetAttr("cy", return_d)
 .SetAttr("r", return_d);

Now we have 5 circles, with the numbers from 1-5 bound to them as data (one number per circle).

What if we get more data?

// Change data
data = {1, 2, 3, 4, 5, 6, 7};

// Select all of the circles and bind the new data
update = svg.SelectAll("circle").Data(data);

// This time the enter selection only contains two data points:
// 6 and 7
enter = update.Enter();

// Add new circles for the new data and set
// attributes appropriately
enter.Append("circle")
 .SetAttr("cx", return_d)
 .SetAttr("cy", return_d)
 .SetAttr("r", return_d);

Now we have 7 circles. We added circles for the ones that didn’t already have circles.

What happens if our dataset shrinks? We can use the selection.Exit() method. This returns the
“exit selection”. In the same way the enter selection contains all of the data points without
circles, the exit selection contains all of the circles without data points. Usually we want to
remove them:

// Change data
data = {1,2,3,4};

// Select all of the circles and bind the new data
update = svg.SelectAll("circle").Data(data);

// The enter selection would be empty, but the exit
// selection has three things in it: 5, 6, and 7
exit = update.Exit();

// Remove everything in the exit selection from the DOM
// (as a shortcut, we could have just used ExitRemove()
// on the previous line)
exit.Remove();

Now we’re down to four circles.

What happens if our data is replaced with four completely different numbers? The enter and exit
selections will be empty (every data point has a circle and every circle has a data point), but
the circles’ attributes won’t correspond to the right data anymore.
Now it’s finally time to use that “update”
variable we keep making. That variable has been holding what’s called the “update selection.”
The update selection is directly returned by the selection.data() method, and it contains all of
the data points associated with circles that already existed before the data was bound. We can
use it to re-set the circles’ attributes, based on the new data:

// Change data
data = {10, 11, 12, 13};

// Select all of the circles and bind the new data
update = svg.SelectAll("circle").Data(data);

// Reset the attributes of the update selection
update.SetAttr("cx", return_d)
 .SetAttr("cy", return_d)
 .SetAttr("r", return_d);

Congratulations! You’ve now used d3’s popular enter-update-exit pattern. For a more thorough
discussion, see [this article](https://bost.ocks.org/mike/join/) by the creator of d3.js.

There’s one other thing you should know about binding data. Thus far, we’ve been matching data with
DOM elements sequentially (the first data point in the array gets paired with the first circle in
the selection, and so on). But sometimes you’d like to keep the same circle corresponding to the
same data point (this is especially important if you’re applying transitions). To acheive this,
you can pass selection.Data() a “key” function that takes a piece of data (and optionally a
position in the array/selection) and returns a string. Data points are then matched with DOM
elements based on whether the string returned by running the function on the data point matches
the string returned by running the function on the data bound to the element.

// Change data (re-arrange three elements and replace the fourth)
data = {13, 12, 11, 8}

// Select all of the circles and bind the new data with a key
// function. The key function supplied here is a lambda
// function that, like the return_d function
// we already wrote, just returns the value of the bound data
// The update selection contains circles for 11, 12, and 13,
// still associated with the correct data (so we don't need
// to reset the attributes)
update = svg.SelectAll("circle")
 .Data(data, [](int d, int i){return d};);

// The enter selection contains 8
// EnterAppend just combines Enter() and Append()
// In Javascript, it's common to chain methods, as is
// done below. Most Selection methods in the D3 wrapper
// return the selection, so that we can chain methods here too
// The code below does exactly the same thing we did to the
// other enter selections
update.EnterAppend("circle")
 .SetAttr("cx", return_d)
 .SetAttr("cy", return_d)
 .SetAttr("r", return_d);

// The exit selection contains 10
update.ExitRemove();

Changing Elements’ Traits

There are three types of traits that a DOM element might have: attributes, styles, and properties.
For the most part, attributes are fundamental pieces of information about the element, styles deal
with the element’s appearance (they are all things you could set with CSS), and properties are rare
and specific to certain types of elements. The distinction mostly only matters because it
determines which functions you call to set and get the values of a trait. Here are some examples
of commonly used traits in each category:

Attributes (use SetAttr()):

	id - an element’s unique identifier

	width - in pixels, by default

	height - in pixels, by default

	x - the location of an element on the x axis (in pixels)

	y - the location of an element on the y axis (in pixels)

	cx - the location of a circle’s center on the x axis (in pixels)

	cy - the location of a circle’s center on the y axis (in pixels)

	r - a circle’s radius (in pixels)

	transform - a string indicating how to position the element. The Move and Rotate methods
of selections are a convenient shortcut for this.

Styles (use SetStyle()):

	fill - the color an SVG shape is filled with

	stroke - the color of a line (either the border of an SVG shape or a path object)

	stroke-width - the length of a path or SVG shape border

Properties (use SetProperty()):

	checked - a property indicating whether or not a checkbox is checked

All of these functions take two arguemnts: a string indicating the name of the trait being changed
and the value to change it to. This vale can be a constant, such as a number, string, or color
(depending on the trait). They also accept functions (simple example above, explained in more
detail below) that allow you to set the trait based off of each element’s bound data. Javascript
will pass these functions three parameters: the value bound as data, the index of the element in
the selection, and a third element that we don’t currently have a good way to translate to C++
(use an int as a placeholder in your function definition so C++ doesn’t throw a tantrum).

Transitions

One of the most powerful parts of D3 is the ease with which it allows you to animate your data.
This is accomplished with transitions. The most common way to make a transition is to call the
selection.MakeTransition() method on a selection containing all of the elements you want to
animate (note: in Javascript, the method is just selection.transition(), because Javascript is
less finicky about name collisions). You can then use the attr() and style() methods on the
transition, just as you would on a selection, and the change will be animated. Note that the
wrapper also allows you to set properties, html, and classes on a transition, but D3 doesn’t know
how to animate changes in these, so they will just happen at the end of the transition. Other
operations, such as appending new elements, are not allowed on transitions, because there isn’t a
clear way to animate them.

For instance, here’s an example of animating a circle moving across the screen and gradually
changing color from black (default) to blue:

// Add an svg canvas to the body and set its width to 100 pixels
D3::Selection svg = D3::Select("body").Append("svg")
 .SetAttr("width", 100);

// Put a circle on the canvas
D3::Selection circle = svg.Append("circle");

// The circle will only show up if we give it x and y coordinates
// for it's center, and a radius Since we're going to move it
// from the left side of the screen to the right, we'll start it
// centered at 0, the left edge (it will be half of the canvas)
circle.SetAttr("cx", 0).SetAttr("cy", 5).SetAttr("r", 5)

// Make a transition from the circle selection
D3::Transition circle_anim = circle.MakeTransition();

// By changing the "cx" attribute via the transition, we cause
// the change to be animated, so we see the circle moving across
// the screen. Similarly, we see the circle fade from black
// to blue.
circle_anim.SetAttr("cx", 100).SetStyle("fill", "blue");

Some functions in Empirical’s D3 wrapper that accept selections will also select transitions,
allowing you to choose to have their effects be animated, rather than occuring instantaneously
(which can look choppy in many visualizations).

Scales and Axes

Usually your data is not in units that you can directly draw on the screen. For instance, if you
want to plot a variable on the Y axis that has values from -1 to 1, you’ll need a way to convert
from these very small values to values representing where the elements of your visualization should
appear on the SVG canvas (in pixels). This is what scales do. Like a number of
other objects in D3, scales are actually functions. They accept a value in the domain (the range of
values your data can have) and return a value in the range (the range of coordinates on your screen
that you want data to show up in).

For example, lets say we have data ranging from 0 to 1 and we
want to convert it to coordinates on our screen from 0 to 100. We can make a scale to do it:

// Make a scale. We'll use a LinearScale, but you could also use
// an IdentityScale, LogScale, or PowScale
D3::LinearScale y_scale = D3::LinearScale();

// Set domain (possible input values)
y_scale.SetDomain(0, 1);

// Set range (possible output values)
y_scale.SetRange(0, 100);

// Convert value from domain to range
// This will be 100
double result = y_scale.ApplyScale(1);

// This will be 0
result = y_scale.ApplyScale(0);

// This will be 50
result = y_scale.ApplyScale(.5);

// Example data
emp::vector<int> data = {.1, .2, .3, .4, .5};

// Add SVG canvas to body, set its height to 100 (so our data
// fits)
D3::Selection svg = D3::Select("body")
 .Append("svg")
 .SetAttr("height", 100);

// make empty selection for circles,
// bind data to selection, and append circles for data
svg.SelectAll("circle")
 .Data(data)
 .Append("circle");

// Set y coordinate of circle centers based on y_scale
// Input to this function is the bound data, the index
// of the circles in the selection, and a placeholder
// value. Here, we use a lambda function, as it is a
// convenient way to put the y_scale in the proper scope.
circles.SetAttr("cy", [&y_scale](int d, int i, int j){
 return y_scale.ApplyScale(d);
 });

// Set cx and r so circles show up
circles.SetAttr("cx", 5).SetAttr("r", 3);

Great - we’ve used a scale to plot our data. But how are we supposed to know what the original
data values were, now? With an axis <Axes_API object! Axes are a way of creating a visual
representation of a scale:

// Make an axis object, templated off of
// the type of scale we're depicting
// We pass the constructor a string to tell it
// how to label the axis.
D3::Axis<D3::LinearScale> ax = D3::Axis<D3::LinearScale>("yvar");

// Set the axis to use our y scale
ax.SetScale(y_scale);

// This is a y axis, so we probably want it oriented
// vertically with the numbers and label on the left
ax.SetOrientation("left");

// Draw the axis onto our SVG object
ax.Draw(svg);

If you’re drawing both x and y axes, you may want to try using DrawAxes(), which attempts to make
a smart guess about where to place them.

You’re not limited to working with numbers when you use scales. If you provide strings with color
names (or hex representations), the scale will return an appropriately interpolated color. You can
even provide an array of more than two numerical values to domain, and an array containing an
equal number of colors to range, and D3 will interpolate appropriately. If you don’t want a
continuous range of colors, try a categorical scale. The Category10Scale will assign colors to
up to 10 different categorical values. The Category20Scale can handle 20.

Passing Functions as Arguments

In Javascript, it’s very common to pass functions as arguments to other functions in order to
customize their behavior. This comes, in part, from the fact that a lot of Javascript code is
exectured asynchronously. Since the goal of most Javscript is to run a web page, Javascript needs
to respond to events such as user interactions (clicking, scrolling, etc.). It also needs to avoid
delaying everything on the page just because there’s a picture it’s trying to load from a server
that’s down. As a result, functions that require waiting for something to happen often accept a
“callback function” as an argument. This function will get run when the function it was passed to
is done. This way of programming can take some getting used to for people who are more used to
more linear programming languages, but it’s hard to avoid when writing web code.

D3.js makes heavy use of functions-as-arguments. Most commonly, this happens when you’re trying to
set attributes of graphical elements based on the data that is bound to them (as demonstrated in
the section on binding data); you pass a function that
takes a piece of data as an argument and returns the attribute value.

In Empirical, there are a number of ways to pass functions as arguments into d3 methods:

	Write the callback function as a regular C++ function, a
C++ lambda function [http://en.cppreference.com/w/cpp/language/lambda],
or a std::function object [http://en.cppreference.com/w/cpp/utility/functional/function]
and pass it into the d3 method.

int times_two(int d, int i, int j) {return d*2;};

int main() {
 // Create an empty selection for circles on an svg canvas
 // (assumes svg is already created). Bind data [1,2,3]
 // to selection, and add a circle for each data point
 D3::Selection s = Select("svg")
 .SelectAll("circle")
 .Data(emp::vector({1,2,3}))
 .EnterAppend("circle");

 // We can use either of the following two lines to set
 // the circles' radii to be equal to two times their
 // data point (1, 2, or 3). Here we use a normal C++
 // function (could also be a std::function object)
 s.SetAttr("r", times_two);

 // Javascript will pass this function three things: the
 // data (d) bound to an element (an int, in this case),
 // an int (i) indicating the position of the element in
 // the selection, and a third item that you
 // don't need to worry about yet, but that requires an
 // int parameter (j) as a placeholder
 s.SetAttr("r", [](int d, int i, int j){return d * 2;});

	Pass the d3 method a string containing the name of a function that exists in Javascript (either
one that has been created by empirical, one that you defined globally on the current webpage, or
a d3 built-in function).

// For instance, if we wanted to sort our selection from
// the previous example, we could use d3's built-in
// "ascending" function:
s.sort("ascending");

	If you’re going to be repeatedly using a C++ function as a callback, you may improve the efficiency
of your code by combining the two previous approaches, using Empirical’s JSWrap function.

// Creates a function in Javascript called "times_two"
// that calls times_two
emp::JSWrap(times_two, "times_two");

// Call the Javascript version of times_two
s.SetAttr("r", "times_two");

	Advanced users may also wish to write functions directly in Javascript, which is possible using
Emscripten’s macros.

// Put the function in global scope by adding it
// to the current window
EM_ASM({window["times_two"] = function(d, i, j){return d*2;};});

// Call the Javascript version of times_two
s.SetAttr("r", "times_two");

All of these examples have assumed that the data points you’ve bound to your selection are ints.
But most real-world data points are more complex than that (e.g. they may contain values for
multiple variables). Javascript handles such data nicely by using
JSON objects [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON].
You can write functions in C++ that accept JSON data from Javascript, but you have to tell C++
what data it should be expecting. An Empirical feature called
introspective tuple structs provide a
convenient way to do that, which JSWrap understands.

struct JSONData {
 EMP_BUILD_INTROSPECTIVE_TUPLE(int, x,
 int, y,
 std::string, name
)
};

int get_x(JSONData d, int i, int j) {return d.x();};

// Assume s is a selection with a dataset already bound to it,
// and that that dataset contains JSON objects with the
// attributes described in the JSONData struct (x, y, and name).
// Set the "cx" attribute of the circle (the x position of the
// circle on your screen, in pixels) to the return of calling
// get_x on the data bound to each circle (i.e. the x value
// stored in the data point bound to a given circle)
s.SetAttr("cx", get_x);

Under the Hood (for the curious, developers, and people trying to do weird stuff)

For the most part, Empirical’s d3 wrapper isn’t that complicated under the hood. All C++ objects in
the d3 module have a unique integer id. Most of them don’t actually store much more information.
Instead, they serve as an interface to an object stored in Javascript. All Javascript objects
that are being represented in C++ are stored in a Javascript array called js.objects. An object’s
id is actually the index of the corresponding Javascript object in the js.objects array. Methods
of that object reach into Javascript and call the corresponding method on the appropriate object.
Some higher-level functions may call more than one d3 function.

The other piece of complexity that is hidden from the user is the translation between JSON objects
in Javascript and objects created with EMP_BUILD_INTROSPECTIVE_TUPLE. This is all handled by
JSWrap, which identifies objects created with EMP_BUILD_INTROSPECTIVE_TUPLE by looking for a member
called n_fields. n_fields is created by EMP_BUILD_INTROSPECTIVE_TUPLE and indicates how many fields
an object has. All conversion from C++ functions to javascript functions is handled by JSWrap (if
you pass a function directly to a d3 method, JSWrap is called behind the scenes). This is why it is
potentially more efficient to wrap functions once and pass the Javascript name as a string than to
keep passing them as C++ functions and re-wrapping them every time. Rigorous tests on how much of a
slow-down this introduces have not been conducted.

Things to watch out for:

	D3 object creation order - be careful of the order your constructors for d3 objects get called
in. It’s hard to make this happen, but if you’re constructing objects in the constructors for other
objects, it’s possible for the ids to get mixed up.

	Errors in Javascript usually won’t show up on compilation - you need to actually run the code.

	Main is a function that gets run like any other. When main finishes running, its local variables
will go out of scope. This means that everything needed for an ongoing animation needs to live in
global scope.

	Javascript is designed to work asynchronously in a lot of contexts (especially when loading
outside resources or updating the graphics on the screen). This can change the way you need to
structure your code.

D3 Wrapper API

Basic D3 Objects

	
namespace D3

	
	
class D3_Base

	#include <d3_init.h>A base object that all D3 objects inherit from. Handles storing the object in Javascript You probably don’t want to instantiate this directly

Subclassed by D3::Axis< D3::LinearScale >, D3::Axis< SCALE_TYPE >, D3::Category10Scale, D3::Category20bScale, D3::Category20cScale, D3::Category20Scale, D3::Dataset, D3::FormatFunction, D3::JSFunction, D3::JSObject, D3::Layout, D3::Scale, D3::SelectionOrTransition< DERIVED >, D3::SvgShapeGenerator, D3::ToolTip, D3::SelectionOrTransition< Selection >, D3::SelectionOrTransition< Transition >

Public Functions

	
int GetID()

	

Protected Functions

	
D3_Base()

	Default constructor - adds placeholder to js.objects array in Javascript.

	
D3_Base(int id)

	Construct an object pointing to a pre-determined location in js.objects.

Protected Attributes

	
int id

	

	
class FormatFunction

	#include <d3_init.h>A callable string d3.format() string formatting function.

Inherits from D3::D3_Base

Public Functions

	
FormatFunction(std::string format = "")

	

	
std::string operator()(double d)

	

	
int GetID()

	

Protected Attributes

	
int id

	

	
class JSFunction

	#include <d3_init.h>Wrapper for creating functions in javascript and calling them there.

Inherits from D3::D3_Base

Public Functions

	
JSFunction()

	

	
JSFunction(std::string name)

	

	
void operator()()

	Only works if function has no arguments or returns.

	
int GetID()

	

Protected Attributes

	
int id

	

	
class JSObject

	#include <d3_init.h>Catch-all object for storing references to things created in JS.

Inherits from D3::D3_Base

Public Functions

	
JSObject()

	

	
int GetID()

	

Protected Attributes

	
int id

	

	
class ToolTip

	#include <d3_init.h>Create a tooltup using the d3.tip Javascript library.

Inherits from D3::D3_Base

Public Functions

	
ToolTip()

	Default constructor - displays whatever data is bound on mouseover.

	
ToolTip(std::string func)

	Cosntructor that allows you to specify a function that returns the html for the tooltip. As input, this function should take 3 parameters: the bound data, the index of this item in the selection (int), and a placeholder (int).

Example:

`D3::FormatFunction rounded = D3::FormatFunction(”.2f”);

std::function<double, int, int)> tooltip_display = [this](double d, int i, int k) {return “Data: ” + to_string(rounded(d));}

D3::ToolTip tip = D3::ToolTip(tooltip_display);

D3::Selection example_selection = D3::SelectAll(“circle”);

example_selection.SetupToolTip(tip);’

Mousing over a circle in the example selection will display “Data: ” followed by the value of d, rounded to two decimal points.

	
void SetHtml(std::string func)

	

	
int GetID()

	

Protected Attributes

	
int id

	

Selections and Transitions

	
namespace D3

	
Functions

	
Selection Select(std::string selector)

	Create a selection containing the first DOM element matching [selector] (convenience function to match D3 syntax - you can also just use the constructor)

	
Selection SelectAll(std::string selector)

	Create a selection containing all DOM elements matching [selector] (convenience function to match D3 syntax - you can also just use the constructor)

	
template <typename T>

	
Selection ShapesFromData(T values, std::string shape)

	Makes a shape of type [shape] for each element in [values] on the first svg canvas on the DOM Values can be a D3::Dataset, an array, or a vector.

	
template <typename T>

	
Selection ShapesFromData(T values, std::string shape, Selection svg)

	Makes a shape of type [shape] for each element in [values] on [svg], which must be a selection containing an SVG canvas. Values can be a D3::Dataset, an array, or a vector.

	
class Selection

	#include <selection.h>Selections [https://github.com/d3/d3-3.x-api-reference/blob/master/Selections.md/] are the primary way that d3 allows you to operate on DOM elements (i.e. objects on your webpage). A selection is effectively an array of DOM elements that you can act on at the same time and bind a collection of data to.

For a deep dive into how selections work in d3, see this article [https://bost.ocks.org/mike/selection/].

Inherits from D3::SelectionOrTransition< Selection >

Setters

There are three main types of values you might want to change about a selection: attributes (use SetAttr), styles (use SetStyle), and properties (use SetProperty). The distinction between these types is rooted in how they are represented in web languages (Javascript, CSS, and HTML) and would ideally be abstracted in this wrapper but can’t be.

Additional traits you can set include text and html.

Advanced note: In D3.js, the same functions are used to set and get values (depending on whether an argument is passed). Because C++ needs to have clearly defined return types we need separate getters for each return type.

	
Selection SetAttr(std::string name, std::string value)

	Assigns [value] to the selection’s [name] attribute. Value can be any primitive type, a string, a function object, or a lambda. If a string is passed, it can be a normal string, or the name of a function in d3, emp (such as one created with JSWrap), or the local window. If it is a function name, that function will be run, receiving bound data, if any, as input

	
Selection SetStyle(std::string name, std::string value, bool priority = false)

	Sets the selection’s [name] style to [value]. This is the same idea as SetAttr, except for CSS styles. Value can be any primitive type, a string, a function object, or a lambda. If a string is passed, it can be a normal string, or the name of a function in d3, emp (such as one created with JSWrap), or the local window. If it is a function name, that function will be run, receiving bound data, if any, as input

There is a third optional argument, a boolean indicating whether you want to give this setting priority.

	
Selection SetText(std::string text)

	Sets this selection’s text to the specified string, or the string returned by running the specified function on the element’s bound data

	
Selection SetProperty(std::string name, std::string value)

	Sets special properties of DOM elements (e.g. “checked” for checkboxes) Value can be a number, function, string, or string naming a Javascript function See the d3 documentation [https://github.com/d3/d3-selection#selection_property] for more information.

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
Selection SetHtml(std::string value)

	Sets this selection’s inner html to the specified string, or the string returned by running the specified function on the element’s bound data

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
Selection SetClassed(std::string classname, bool value)

	Change whether or not element in this selection have the [classname] class. Example: Add the data-point class with selection.SetClassed(“data-point”, true); Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

Getters

There are three main types of values you might want to access about a selection: attributes (use GetAttr), styles (use GetStyle), and properties (use GetProperty). The distinction between these types is rooted in how they are represented in web languages (Javascript, CSS, and HTML) and would ideally be abstracted in this wrapper but can’t be.

Additional traits you can set include text and html.

Advanced note: In D3.js, the same functions are used to set and get values (depending on whether an argument is passed). Because C++ needs to have clearly defined return types (and because different macros are required to return different types from Javascript), we need separate getters for each return type.

	
std::string GetAttrString(std::string name)

	Get the value of this object’s [name] attribute when it’s a string.

	
int GetAttrInt(std::string name)

	Get the value of this object’s [name] attribute when it’s an int.

	
double GetAttrDouble(std::string name)

	Get the value of this object’s [name] attribute when it’s a double.

	
std::string GetStyleString(std::string name)

	Get the value of this object’s [name] style when it’s a string.

	
int GetStyleInt(std::string name)

	Get the value of this object’s [name] style when it’s an int.

	
double GetStyleDouble(std::string name)

	Get the value of this object’s [name] style when it’s a double.

	
std::string GetText()

	Get this object’s text.

	
std::string GetHtml()

	Get this object’s html

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
std::string GetPropertyString(std::string name)

	Get the value of this object’s [name] property when its a string

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
int GetPropertyInt(std::string name)

	Get the value of this object’s [name] property when it’s an int

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
double GetPropertyDouble(std::string name)

	Get the value of this object’s [name] property when it’s a double

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
bool Empty()

	Returns true if there are no elements in this selection (or all elements are null)

	
int Size()

	Returns number of elements in this selection.

Constructors

You may prefer to use the Select or SelectAll functions for improved code clarity/consistency with d3.js

	
Selection()

	Default constructor - constructs empty selection.

	
Selection(int id)

	Create Selection object with a specific id.

Advanced note: This is useful when creating a Selection object to point to a selection

	
Selection(std::string selector, bool all = false)

	This is the Selection constructor you usually want to use. It takes a string saying what to select and a bool saying whether to select all elements matching that string [true] or just the first [false]

	
~Selection()

	Destructor.

Binding Data

This group of functions allows you to bind data to the current selection and deal with new data you have just bound (the enter selection) and data that was previously bound to to the selection but is not present in the set of data that was most recently bound (the exit selection)

The process of binding data to a selection is called a “join” in d3-speak. For more in-depth explanation, see this article [https://bost.ocks.org/mike/join/].

	
Selection Data(Dataset values, std::string key = "")

	Bind data to selection. Accepts any contiguous container (such as an array or vector) or a D3::Dataset object (which stores the data Javascript). Optionally also accepts a key function to run on each element to determine which elements are equivalent (if no key is provided, elements are expected to be in the same order each time you bind data to this selection). This function can either be a string with the name of a function in Javascript, or it can be a C++ function pointer, std::function object, or lambda.

	
Selection EnterAppend(std::string type)

	This function appends the specified type of nodes to this selection’s enter selection, which merges the enter selection with the update selection.

Selection must have an enter selection (i.e. have just had data bound to it).

	
Selection EnterInsert(std::string name, std::string before = NULL)

	Insert elements of type [name] into current enter selection

For more information, see the D3 documention on insert [https://github.com/d3/d3-3.x-api-reference/blob/master/Selections.md#insert]

	
Selection Enter()

	Sometimes you want to perform multiple operations on the enter selection. If so, you can use the Enter() method to get the enter selection, rather than using one of the convenience functions like EnterAppend().

Returns a selection object pointing at this selection’s enter selection.

	
Selection ExitRemove()

	Selection must have an exit selection (i.e. have just had data bound to it).

Pretty much the only thing you ever want to do with the exit() selection is remove all of the nodes in it. This function does just that.

	
Selection Exit()

	Usually the only thing you want to do with the exit selection is remove its contents, in which case you should use the ExitRemove method. However, advanced users may want to operate on the exit selection, which is why this method is provided.

Returns a selection object pointing at this selection’s exit selection.

Public Functions

	
Selection Append(std::string name)

	Append DOM element(s) of the type specified by [name] to this selection.

	
Selection Insert(std::string name, std::string before = NULL)

	Insert DOM element of type “name” into the current selection before the element selected by the element specified by the [before] string

For more information, see the D3 documention on insert [https://github.com/d3/d3-3.x-api-reference/blob/master/Selections.md#insert]

	
Transition MakeTransition(std::string name = "")

	Create a transition from the current selection. If a [name] is specified the transition will be given that name

	
void Interrupt(std::string name = "")

	Interrupt the transition with the name [name] on the current selection.

	
void Move(int x, int y)

	Move the elements in this selection by [x] in the x direction and [y] in the y direction. Note for advanced users: this method is just a shortcut for setting the “transform” attribute to “translate(x, y)”, because doing that is a pain in C++ (even more so than in Javascript)

	
void Rotate(int degrees)

	Rotate the elements in this selection by [degrees]. Note for advanced users: this method is just a shortcut for setting the “transform” attribute to “rotate(degrees)”, because doing that is a pain in C++ (even more so than in Javascript)

	
void Order()

	Change the order of elements in the document to match their order in this selection.

	
Selection On(std::string type, std::string listener = "null", bool capture = false)

	Listen for an event of type [type] and call [listener] when it happens [listener] can be a string containing the name of a Javascript function, or a C++ function

The third paramter for the listener function is the id of a selection containing the relevant DOM object.

To remove an event listener, call On with that type and “null” as the listener (default)

Advanced note: the optional capture flag invokes Javascript’s useCapture [https://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-registration] option

	
Selection Sort(std::string comparator = "ascending")

	Sort the selection by the given comparator function. The function can be a C++ function or a stirng indicating a function in the d3 namespace, the emp namespace (as results from JSWrapping C++ functions), or the window namespace. These three options are checked sequentially in that order, so a C++ function with the same name as d3 built-in will not override the built-in. Similarly, a function declared directly in the window will be overriden by a JSWrapped function with the same name.

	
void AddToolTip(ToolTip &tip)

	Add the ToolTip [tip] to the current selection.

	
Selection Select(std::string selector)

	Create a new selection/transition containing the first element matching the [selector] string that are within this current selection/transition

	
Selection SelectAll(std::string selector)

	Create a new selection/transition containing all elements matching the [selector] string that are within this current selection/transition

	
Selection Call(std::string function)

	Call the given function once on the entire selection/transition. [function] can either be a C++ function or a string with the name of a Javascript function in the d3, emp, or current window namespace. To get around the problem of passing selections into C++, this function assumes that the function you are passing expects a single argument: an int, representing the id of the selection to be operated on (which you can then convert to a selection object with D3::Selection(i)).

	
Selection Filter(std::string selector)

	Returns a new selection/transition, representing the current selection/transition filtered by [selector]. [selector] can be a C++ function that returns a bool, a string representing a function in either the d3, emp, or window namespaces that returns a bool, or a string containing a selector to filter by.

For more information see the D3 documentation [https://github.com/d3/d3-3.x-api-reference/blob/master/Selections.md#filter]

	
Selection Each(std::string function)

	Call the given function on each element of the selection/transition. [function] can either be a C++ function or a string with the name of a Javascript function in the d3, emp, or current window namespace.

	
Selection Each(std::string time, std::string function)

	Call the given function on each element of the selection/transition. [function] can either be a C++ function or a string with the name of a Javascript function in the d3, emp, or current window namespace. Adding a time argument makes the functions serve as a listener for the specified transition event (“start”, “end”, or “interrupt”)

	
void Remove()

	Remove the elements in this selection/transition from the document For transitions, this happens at the end of the transition.

Private Members

	
bool enter

	

	
bool exit

	

	
template <typename DERIVED>

	
class SelectionOrTransition

	#include <selection.h>You probably never want to instantiate this class. Its sole purpose is to hold code for methods that are common to selections and transitions

Developer note: It’s also handy if you want to allow a function to accept either a selection or transition. This is a good idea any time you are only using methods that are applicable to either, and the person calling the function may want to animate its results.

Inherits from D3::D3_Base

Setters

There are three main types of values you might want to change about a selection: attributes (use SetAttr), styles (use SetStyle), and properties (use SetProperty). The distinction between these types is rooted in how they are represented in web languages (Javascript, CSS, and HTML) and would ideally be abstracted in this wrapper but can’t be.

Additional traits you can set include text and html.

Advanced note: In D3.js, the same functions are used to set and get values (depending on whether an argument is passed). Because C++ needs to have clearly defined return types we need separate getters for each return type.

	
DERIVED SetAttr(std::string name, std::string value)

	Assigns [value] to the selection’s [name] attribute. Value can be any primitive type, a string, a function object, or a lambda. If a string is passed, it can be a normal string, or the name of a function in d3, emp (such as one created with JSWrap), or the local window. If it is a function name, that function will be run, receiving bound data, if any, as input

	
DERIVED SetStyle(std::string name, std::string value, bool priority = false)

	Sets the selection’s [name] style to [value]. This is the same idea as SetAttr, except for CSS styles. Value can be any primitive type, a string, a function object, or a lambda. If a string is passed, it can be a normal string, or the name of a function in d3, emp (such as one created with JSWrap), or the local window. If it is a function name, that function will be run, receiving bound data, if any, as input

There is a third optional argument, a boolean indicating whether you want to give this setting priority.

	
DERIVED SetText(std::string text)

	Sets this selection’s text to the specified string, or the string returned by running the specified function on the element’s bound data

	
DERIVED SetProperty(std::string name, std::string value)

	Sets special properties of DOM elements (e.g. “checked” for checkboxes) Value can be a number, function, string, or string naming a Javascript function See the d3 documentation [https://github.com/d3/d3-selection#selection_property] for more information.

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
DERIVED SetHtml(std::string value)

	Sets this selection’s inner html to the specified string, or the string returned by running the specified function on the element’s bound data

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
DERIVED SetClassed(std::string classname, bool value)

	Change whether or not element in this selection have the [classname] class. Example: Add the data-point class with selection.SetClassed(“data-point”, true); Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

Getters

There are three main types of values you might want to access about a selection: attributes (use GetAttr), styles (use GetStyle), and properties (use GetProperty). The distinction between these types is rooted in how they are represented in web languages (Javascript, CSS, and HTML) and would ideally be abstracted in this wrapper but can’t be.

Additional traits you can set include text and html.

Advanced note: In D3.js, the same functions are used to set and get values (depending on whether an argument is passed). Because C++ needs to have clearly defined return types (and because different macros are required to return different types from Javascript), we need separate getters for each return type.

	
std::string GetAttrString(std::string name)

	Get the value of this object’s [name] attribute when it’s a string.

	
int GetAttrInt(std::string name)

	Get the value of this object’s [name] attribute when it’s an int.

	
double GetAttrDouble(std::string name)

	Get the value of this object’s [name] attribute when it’s a double.

	
std::string GetStyleString(std::string name)

	Get the value of this object’s [name] style when it’s a string.

	
int GetStyleInt(std::string name)

	Get the value of this object’s [name] style when it’s an int.

	
double GetStyleDouble(std::string name)

	Get the value of this object’s [name] style when it’s a double.

	
std::string GetText()

	Get this object’s text.

	
std::string GetHtml()

	Get this object’s html

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
std::string GetPropertyString(std::string name)

	Get the value of this object’s [name] property when its a string

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
int GetPropertyInt(std::string name)

	Get the value of this object’s [name] property when it’s an int

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
double GetPropertyDouble(std::string name)

	Get the value of this object’s [name] property when it’s a double

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
bool Empty()

	Returns true if there are no elements in this selection (or all elements are null)

	
int Size()

	Returns number of elements in this selection.

Public Functions

	
SelectionOrTransition()

	

	
SelectionOrTransition(int id)

	

	
DERIVED Select(std::string selector)

	Create a new selection/transition containing the first element matching the [selector] string that are within this current selection/transition

	
DERIVED SelectAll(std::string selector)

	Create a new selection/transition containing all elements matching the [selector] string that are within this current selection/transition

	
DERIVED Call(std::string function)

	Call the given function once on the entire selection/transition. [function] can either be a C++ function or a string with the name of a Javascript function in the d3, emp, or current window namespace. To get around the problem of passing selections into C++, this function assumes that the function you are passing expects a single argument: an int, representing the id of the selection to be operated on (which you can then convert to a selection object with D3::Selection(i)).

	
DERIVED Filter(std::string selector)

	Returns a new selection/transition, representing the current selection/transition filtered by [selector]. [selector] can be a C++ function that returns a bool, a string representing a function in either the d3, emp, or window namespaces that returns a bool, or a string containing a selector to filter by.

For more information see the D3 documentation [https://github.com/d3/d3-3.x-api-reference/blob/master/Selections.md#filter]

	
DERIVED Each(std::string function)

	Call the given function on each element of the selection/transition. [function] can either be a C++ function or a string with the name of a Javascript function in the d3, emp, or current window namespace.

	
DERIVED Each(std::string time, std::string function)

	Call the given function on each element of the selection/transition. [function] can either be a C++ function or a string with the name of a Javascript function in the d3, emp, or current window namespace. Adding a time argument makes the functions serve as a listener for the specified transition event (“start”, “end”, or “interrupt”)

	
void Remove()

	Remove the elements in this selection/transition from the document For transitions, this happens at the end of the transition.

	
class Transition

	#include <selection.h>Transitions [https://github.com/d3/d3-3.x-api-reference/blob/master/Transitions.md/] are similar to selections, but when you make a change to them (attr or style), it will be animated. For additional discussion of transitions in d3, see this article [https://bost.ocks.org/mike/transition/].

Inherits from D3::SelectionOrTransition< Transition >

Setters

There are three main types of values you might want to change about a selection: attributes (use SetAttr), styles (use SetStyle), and properties (use SetProperty). The distinction between these types is rooted in how they are represented in web languages (Javascript, CSS, and HTML) and would ideally be abstracted in this wrapper but can’t be.

Additional traits you can set include text and html.

Advanced note: In D3.js, the same functions are used to set and get values (depending on whether an argument is passed). Because C++ needs to have clearly defined return types we need separate getters for each return type.

	
Transition SetAttr(std::string name, std::string value)

	Assigns [value] to the selection’s [name] attribute. Value can be any primitive type, a string, a function object, or a lambda. If a string is passed, it can be a normal string, or the name of a function in d3, emp (such as one created with JSWrap), or the local window. If it is a function name, that function will be run, receiving bound data, if any, as input

	
Transition SetStyle(std::string name, std::string value, bool priority = false)

	Sets the selection’s [name] style to [value]. This is the same idea as SetAttr, except for CSS styles. Value can be any primitive type, a string, a function object, or a lambda. If a string is passed, it can be a normal string, or the name of a function in d3, emp (such as one created with JSWrap), or the local window. If it is a function name, that function will be run, receiving bound data, if any, as input

There is a third optional argument, a boolean indicating whether you want to give this setting priority.

	
Transition SetText(std::string text)

	Sets this selection’s text to the specified string, or the string returned by running the specified function on the element’s bound data

	
Transition SetProperty(std::string name, std::string value)

	Sets special properties of DOM elements (e.g. “checked” for checkboxes) Value can be a number, function, string, or string naming a Javascript function See the d3 documentation [https://github.com/d3/d3-selection#selection_property] for more information.

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
Transition SetHtml(std::string value)

	Sets this selection’s inner html to the specified string, or the string returned by running the specified function on the element’s bound data

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
Transition SetClassed(std::string classname, bool value)

	Change whether or not element in this selection have the [classname] class. Example: Add the data-point class with selection.SetClassed(“data-point”, true); Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

Getters

There are three main types of values you might want to access about a selection: attributes (use GetAttr), styles (use GetStyle), and properties (use GetProperty). The distinction between these types is rooted in how they are represented in web languages (Javascript, CSS, and HTML) and would ideally be abstracted in this wrapper but can’t be.

Additional traits you can set include text and html.

Advanced note: In D3.js, the same functions are used to set and get values (depending on whether an argument is passed). Because C++ needs to have clearly defined return types (and because different macros are required to return different types from Javascript), we need separate getters for each return type.

	
std::string GetAttrString(std::string name)

	Get the value of this object’s [name] attribute when it’s a string.

	
int GetAttrInt(std::string name)

	Get the value of this object’s [name] attribute when it’s an int.

	
double GetAttrDouble(std::string name)

	Get the value of this object’s [name] attribute when it’s a double.

	
std::string GetStyleString(std::string name)

	Get the value of this object’s [name] style when it’s a string.

	
int GetStyleInt(std::string name)

	Get the value of this object’s [name] style when it’s an int.

	
double GetStyleDouble(std::string name)

	Get the value of this object’s [name] style when it’s a double.

	
std::string GetText()

	Get this object’s text.

	
std::string GetHtml()

	Get this object’s html

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
std::string GetPropertyString(std::string name)

	Get the value of this object’s [name] property when its a string

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
int GetPropertyInt(std::string name)

	Get the value of this object’s [name] property when it’s an int

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
double GetPropertyDouble(std::string name)

	Get the value of this object’s [name] property when it’s a double

Advanced note: This is implemented differently for selection vs transitions. As such, calling it on a SelectionOrTransition object directly is not supported.

	
bool Empty()

	Returns true if there are no elements in this selection (or all elements are null)

	
int Size()

	Returns number of elements in this selection.

Constructors

Usually transitions are constructed from selections by calling the selection.MakeTransition() method. In rare cases you may want to construct a new transition, though.

	
Transition()

	Default constructor - construct empty transition.

	
Transition(int id)

	Advanced: Construct new transition pointing to the [id]th element in js.objects.

	
Transition NewTransition(std::string name = "")

	Create a transition from the current transition. If a [name] is specified the transition will be given that name

Note: In D3.js this method is just called transition(), but in C++ that would cause a collision with the constructor

Public Functions

	
Transition Select(std::string selector)

	Create a new selection/transition containing the first element matching the [selector] string that are within this current selection/transition

	
Transition SelectAll(std::string selector)

	Create a new selection/transition containing all elements matching the [selector] string that are within this current selection/transition

	
Transition Call(std::string function)

	Call the given function once on the entire selection/transition. [function] can either be a C++ function or a string with the name of a Javascript function in the d3, emp, or current window namespace. To get around the problem of passing selections into C++, this function assumes that the function you are passing expects a single argument: an int, representing the id of the selection to be operated on (which you can then convert to a selection object with D3::Selection(i)).

	
Transition Filter(std::string selector)

	Returns a new selection/transition, representing the current selection/transition filtered by [selector]. [selector] can be a C++ function that returns a bool, a string representing a function in either the d3, emp, or window namespaces that returns a bool, or a string containing a selector to filter by.

For more information see the D3 documentation [https://github.com/d3/d3-3.x-api-reference/blob/master/Selections.md#filter]

	
Transition Each(std::string function)

	Call the given function on each element of the selection/transition. [function] can either be a C++ function or a string with the name of a Javascript function in the d3, emp, or current window namespace.

	
Transition Each(std::string time, std::string function)

	Call the given function on each element of the selection/transition. [function] can either be a C++ function or a string with the name of a Javascript function in the d3, emp, or current window namespace. Adding a time argument makes the functions serve as a listener for the specified transition event (“start”, “end”, or “interrupt”)

	
void Remove()

	Remove the elements in this selection/transition from the document For transitions, this happens at the end of the transition.

Scales

	
namespace D3

	
	
class Category10Scale

	#include <scales.h>Inherits from D3::D3_Base

Public Functions

	
Category10Scale()

	

	
class Category20bScale

	#include <scales.h>Inherits from D3::D3_Base

Public Functions

	
Category20bScale()

	

	
class Category20cScale

	#include <scales.h>Inherits from D3::D3_Base

Public Functions

	
Category20cScale()

	

Protected Attributes

	
int id

	

	
class Category20Scale

	#include <scales.h>Inherits from D3::D3_Base

Public Functions

	
Category20Scale()

	

	
class IdentityScale

	#include <scales.h>Inherits from D3::Scale

Subclassed by D3::LinearScale

Public Functions

	
IdentityScale()

	

	
IdentityScale(bool derived)

	

	
template <typename T>

	
double Invert(T y)

	

	
void SetTicks(int count)

	

	
void SetTickFormat(int count, std::string format)

	

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

	
class LinearScale

	#include <scales.h>Inherits from D3::IdentityScale

Subclassed by D3::LogScale, D3::PowScale, D3::TimeScale

Public Functions

	
LinearScale()

	

	
LinearScale(bool derived)

	

	
template <typename T, size_t SIZE>

	
void SetRangeRound(std::array<T, SIZE> values)

	

	
void SetInterpolate(std::string factory)

	

	
void Clamp(bool clamp)

	

	
void Nice(int count = -1)

	

	
template <typename T>

	
double Invert(T y)

	

	
void SetTicks(int count)

	

	
void SetTickFormat(int count, std::string format)

	

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

	
class LogScale

	#include <scales.h>Inherits from D3::LinearScale

Public Functions

	
LogScale()

	

	
LogScale(bool derived)

	

	
template <typename T, size_t SIZE>

	
void SetRangeRound(std::array<T, SIZE> values)

	

	
void SetInterpolate(std::string factory)

	

	
void Clamp(bool clamp)

	

	
void Nice(int count = -1)

	

	
template <typename T>

	
double Invert(T y)

	

	
void SetTicks(int count)

	

	
void SetTickFormat(int count, std::string format)

	

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

	
class OrdinalScale

	#include <scales.h>Inherits from D3::QuantizeScale

Public Functions

	
OrdinalScale()

	

	
OrdinalScale(bool derived)

	

	
template <typename T>

	
double InvertExtent(T y)

	

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

	
class PowScale

	#include <scales.h>Inherits from D3::LinearScale

Public Functions

	
PowScale()

	

	
PowScale(bool derived)

	

	
template <typename T, size_t SIZE>

	
void SetRangeRound(std::array<T, SIZE> values)

	

	
void SetInterpolate(std::string factory)

	

	
void Clamp(bool clamp)

	

	
void Nice(int count = -1)

	

	
template <typename T>

	
double Invert(T y)

	

	
void SetTicks(int count)

	

	
void SetTickFormat(int count, std::string format)

	

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

	
class QuantileScale

	#include <scales.h>Inherits from D3::QuantizeScale

Public Functions

	
QuantileScale()

	

	
QuantileScale(bool derived)

	

	
template <typename T>

	
double InvertExtent(T y)

	

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

	
class QuantizeScale

	#include <scales.h>Inherits from D3::Scale

Subclassed by D3::OrdinalScale, D3::QuantileScale, D3::ThresholdScale

Public Functions

	
QuantizeScale()

	

	
QuantizeScale(bool derived)

	

	
template <typename T>

	
double InvertExtent(T y)

	

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

	
class Scale

	#include <scales.h>Scales in D3 are functions that take input values and map them to output based on a scaling function. They are often used to map data calues to x, y coordinates in pixels describing where on the screen elements should be placed. This is a base class to inherit from - should never be made stand-alone

Inherits from D3::D3_Base

Subclassed by D3::IdentityScale, D3::QuantizeScale

Public Functions

	
Scale()

	

	
Scale(bool derived)

	Decoy constructor so we don’t construct extra base scales.

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

Protected Functions

	
Scale(int id)

	

	
class ThresholdScale

	#include <scales.h>Inherits from D3::QuantizeScale

Public Functions

	
ThresholdScale()

	

	
ThresholdScale(bool derived)

	

	
template <typename T>

	
double InvertExtent(T y)

	

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

	
class TimeScale

	#include <scales.h>Inherits from D3::LinearScale

Public Functions

	
TimeScale()

	

	
TimeScale(bool derived)

	

	
template <typename T, size_t SIZE>

	
void SetRangeRound(std::array<T, SIZE> values)

	

	
void SetInterpolate(std::string factory)

	

	
void Clamp(bool clamp)

	

	
void Nice(int count = -1)

	

	
template <typename T>

	
double Invert(T y)

	

	
void SetTicks(int count)

	

	
void SetTickFormat(int count, std::string format)

	

	
template <typename T, size_t SIZE>

	
void SetRange(std::array<T, SIZE> values)

	Set the output values corresponding to values in the domain. Output for values in between will be interpolated with a function determined by the type of the scale. Array should contain same number of elements as the one used to set the domain.

	
void SetRange(double min, double max)

	

	
template <typename T, size_t SIZE>

	
void SetDomain(std::array<T, SIZE> values)

	Set the input values corresponding to values in the range. Array should contain same number of elements as the one used to set the range.

	
void SetDomain(double min, double max)

	

	
Scale Copy()

	Make a copy of this scale.

	
double ApplyScale(double input)

	Calculate the ouput for [input], based on the scale’s scaling function.

Axes

	
namespace D3

	
Functions

	
template <typename SCALE_X_TYPE = D3::LinearScale, typename SCALE_Y_TYPE = D3::LinearScale>

	
void DrawAxes(Axis<SCALE_X_TYPE> &x_axis, Axis<SCALE_Y_TYPE> &y_axis, Selection &selection)

	Helper function to draw a standard set of x and y axes Takes the desired x axis, y axis, and the selection on which to draw them

	
template <typename SCALE_TYPE = LinearScale>

	
class Axis

	#include <axis.h>Axis objects are in charge of drawing graphical axes onto svg canvases. An axis depicts a scale, so every axis has a scale, and is templated off of the type of that scale.

Inherits from D3::D3_Base

Public Functions

	
Axis(std::string label = "")

	Consruct an axis - this doesn’t draw anything yet, but sets up the necessary infrastructure to draw it when you call the Draw method. Optionally takes a label to label the axis with. This label will also be used to create an id for the axis, to make it easier to select it later. The id will be the same as [label], but with all whitespace removed and “_axis” appended to the end.

For example, if your label was “Per capita mortality”, you could select the axis with: D3::Select("#Percapitamortality_axis");.

	
void Draw(Selection selection)

	Draw axis on [selection] (must contain a single SVG element) with intelligent default positioning

	
template <typename T>

	
void ApplyAxis(SelectionOrTransition<T> selection)

	

	
void SetScale(SCALE_TYPE &scale)

	An axis must have a scale. By default, a scale of SCALE_TYPE will be constructed, but usually you want an axis to depict a specific scale. This method points this object’s scale member variable at [scale].

	
SCALE_TYPE &GetScale()

	Get a reference to this object’s scale.

	
void AdjustLabelOffset(std::string offset)

	Adjust the location of the label text relative to the axis (helpful if numbers are overlapping it). Can be negative. Use “em” (e.g. “2em”) to specify distance relative to font size.

	
void Move(int x, int y)

	Draw tries to make a good guess about where to place the axis, but sometimes you want to scoot it over. This method will move the axis to the x,y location specified.

	
void SetOrientation(std::string orientation)

	Set orientation of this axis to [orientation] (must be “bottom”, “top”, “left”, or “right”) Controls default placement on SVG, whether main line is vertical or horizontal, and which side the ticks and label show up on.

	
template <typename T, std::size_t SIZE>

	
void SetTickValues(std::array<T, SIZE> values)

	

	
void SetTickSize(float size)

	

	
void SetInnerTickSize(float size)

	

	
void SetOuterTickSize(float size)

	

	
void SetTickPadding(int padding)

	

	
void SetTicks(int count)

	Set the number of ticks along the axis.

	
void SetTickFormat(std::string format)

	Set the format for displaying numbers assoiated with ticks. [format] should be a format following the rules for d3.format() [https://github.com/d3/d3-3.x-api-reference/blob/master/Formatting.md#d3_format]

	
template <typename T>

	
void Rescale(double new_min, double new_max, D3::SelectionOrTransition<T> &svg)

	Adjust scale and axis to accomodate the new range of data specified by [new_min], and [new_max]. [svg] is a Selection or Transition containing the current axis. If it’s a transition, then the rescaling will be animated.

Public Members

	
Selection group

	There are a lot of graphical elements associated with an axis, so it’s best to group them all together into an html group element. This selection holds a pointer to the group for this axis

Private Members

	
SCALE_TYPE scale

	

	
std::string label

	

	
std::string dom_id = ""

	

	
std::string label_offset = ""

	

SVG Shapes and Paths

	
namespace D3

	
	
class ArcGenerator

	#include <svg_shapes.h>Inherits from D3::RadialAreaGenerator

Public Functions

	
ArcGenerator()

	

	
void SetCornerRadius(float radius)

	

	
void SetCornerRadius(std::string radius)

	

	
void SetPadRadius(float radius)

	

	
void SetPadRadius(std::string radius)

	

	
void SetPadAngle(float angle)

	

	
void SetPadAngle(std::string angle)

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class AreaGenerator

	#include <svg_shapes.h>An area is defined by two lines, with the area in between shaded.

Inherits from D3::LineGenerator

Public Functions

	
AreaGenerator()

	

	
template <typename T>

	
void SetX0(T x)

	

	
template <typename T>

	
void SetY0(T y)

	

	
void SetX0(std::string x)

	

	
void SetY0(std::string y)

	

	
template <typename T>

	
void SetX1(T x)

	

	
template <typename T>

	
void SetY1(T y)

	

	
void SetX1(std::string x)

	

	
void SetY1(std::string y)

	

	
template <typename X_SCALE_TYPE>

	
void AddXScale(X_SCALE_TYPE &scale)

	Often, when you’re drawing cartesion lines, you want to use a scale to transform numbers from range of your data to the range of pixels on your screen. Adding an X scale will cause the x-coordinates of all points on the line to be passed through that scale function. This stacks on top of whatever the current function for accessing x is (which means scales will also stack).

	
template <typename Y_SCALE_TYPE>

	
void AddYScale(Y_SCALE_TYPE &scale)

	Often, when you’re drawing cartesion lines, you want to use a scale to transform numbers from range of your data to the range of pixels on your screen. Adding a Y scale will cause the y-coordinates of all points on the line to be passed through that scale function. This stacks on top of whatever the current function for accessing y is (which means scales will also stack).

	
void SetX(std::string x)

	If the data that you are generating lines from is anything more complicated than a sequence of pairs of numbers, representing x and y (in that order), you need to tell the line generator how it should figure out what the x coordinate of a point in the line is. The parameter you pass to SetX should be instructions for doing so. It can either be a function (as a string indicating a Javascript function or as a literal C++ function) that accepts an element of the data sequence you are generating the line from, or it can be a constant, in which case the x coordinate of every point will be that constant.

Note: This function will re-set any scales that you’ve added to the X coordinate

As an example, the default function expects data like this (array of arrays): [[0,0], [1,1], [2,2]] And has (a Javascript equivalent of) this accessor: int x(std::array<int, 2> d) {return d[0];}

If your data instead looked like this (array of Javascript objects with x and y values): [{x:0, y:0}, {x:1, y:1}, {x:2, y:2}] You might want to use an accessor like this: int x(JSONObject d) {return d.x();} Where JSONObject is a struct designed to hold necessary data from the Javascript object: struct JSONObject { EMP_BUILD_INTROSPECTIVE_TUPLE(int, x, int, y) };

	
void SetY(std::string y)

	If the data that you are generating lines from is anything more complicated than a sequence of pairs of numbers, representing x and y (in that order), you need to tell the line generator how it should figure out what the y coordinate of a point in the line is. The parameter you pass to SetY should be instructions for doing so. It can either be a function (as a string indicating a Javascript function or as a literal C++ function) that accepts an element of the data sequence you are generating the line from, or it can be a constant, in which case the y coordinate of every point will be that constant.

Note: This function will re-set any scales that you’ve added to the Y coordinate

As an example, the default function expects data like this (array of arrays): [[0,0], [1,1], [2,2]] And has (a Javascript equivalent of) this accessor: int x(std::array<int, 2> d) {return d[1];}

If your data instead looked like this (array of Javascript objects with x and y values): [{x:0, y:0}, {x:1, y:1}, {x:2, y:2}] You might want to use an accessor like this: int x(JSONObject d) {return d.y();} Where JSONObject is a struct designed to hold necessary data from the Javascript object: struct JSONObject { EMP_BUILD_INTROSPECTIVE_TUPLE(int, x, int, y) };

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class BaseLineGenerator

	#include <svg_shapes.h>Base class for generating both cartesian and radial lines You don’t normally want to instantiate this - use LineGenerator or RadialLineGenerator instead.

Inherits from D3::SvgShapeGenerator

Subclassed by D3::LineGenerator, D3::RadialLineGenerator

Public Functions

	
BaseLineGenerator()

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class ChordGenerator

	#include <svg_shapes.h>Inherits from D3::RadialAreaGenerator

Subclassed by D3::DiagonalGenerator, D3::DiagonalRadialGenerator

Public Functions

	
ChordGenerator()

	

	
template <typename T>

	
void SetSource(T source)

	

	
void SetSource(std::string source)

	

	
template <typename T>

	
void SetTarget(T target)

	

	
void SetTarget(std::string target)

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class DiagonalGenerator

	#include <svg_shapes.h>Inherits from D3::ChordGenerator

Public Functions

	
DiagonalGenerator()

	

	
void SetProjection(std::string projection)

	

	
template <typename T>

	
void SetSource(T source)

	

	
void SetSource(std::string source)

	

	
template <typename T>

	
void SetTarget(T target)

	

	
void SetTarget(std::string target)

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class DiagonalRadialGenerator

	#include <svg_shapes.h>Inherits from D3::ChordGenerator

Public Functions

	
DiagonalRadialGenerator()

	

	
template <typename T>

	
void SetSource(T source)

	

	
void SetSource(std::string source)

	

	
template <typename T>

	
void SetTarget(T target)

	

	
void SetTarget(std::string target)

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class LineGenerator

	#include <svg_shapes.h>Generator for regular old (cartesian) lines.

Inherits from D3::BaseLineGenerator

Subclassed by D3::AreaGenerator

Public Functions

	
LineGenerator()

	

	
template <typename X_SCALE_TYPE>

	
void AddXScale(X_SCALE_TYPE &scale)

	Often, when you’re drawing cartesion lines, you want to use a scale to transform numbers from range of your data to the range of pixels on your screen. Adding an X scale will cause the x-coordinates of all points on the line to be passed through that scale function. This stacks on top of whatever the current function for accessing x is (which means scales will also stack).

	
template <typename Y_SCALE_TYPE>

	
void AddYScale(Y_SCALE_TYPE &scale)

	Often, when you’re drawing cartesion lines, you want to use a scale to transform numbers from range of your data to the range of pixels on your screen. Adding a Y scale will cause the y-coordinates of all points on the line to be passed through that scale function. This stacks on top of whatever the current function for accessing y is (which means scales will also stack).

	
void SetX(std::string x)

	If the data that you are generating lines from is anything more complicated than a sequence of pairs of numbers, representing x and y (in that order), you need to tell the line generator how it should figure out what the x coordinate of a point in the line is. The parameter you pass to SetX should be instructions for doing so. It can either be a function (as a string indicating a Javascript function or as a literal C++ function) that accepts an element of the data sequence you are generating the line from, or it can be a constant, in which case the x coordinate of every point will be that constant.

Note: This function will re-set any scales that you’ve added to the X coordinate

As an example, the default function expects data like this (array of arrays): [[0,0], [1,1], [2,2]] And has (a Javascript equivalent of) this accessor: int x(std::array<int, 2> d) {return d[0];}

If your data instead looked like this (array of Javascript objects with x and y values): [{x:0, y:0}, {x:1, y:1}, {x:2, y:2}] You might want to use an accessor like this: int x(JSONObject d) {return d.x();} Where JSONObject is a struct designed to hold necessary data from the Javascript object: struct JSONObject { EMP_BUILD_INTROSPECTIVE_TUPLE(int, x, int, y) };

	
void SetY(std::string y)

	If the data that you are generating lines from is anything more complicated than a sequence of pairs of numbers, representing x and y (in that order), you need to tell the line generator how it should figure out what the y coordinate of a point in the line is. The parameter you pass to SetY should be instructions for doing so. It can either be a function (as a string indicating a Javascript function or as a literal C++ function) that accepts an element of the data sequence you are generating the line from, or it can be a constant, in which case the y coordinate of every point will be that constant.

Note: This function will re-set any scales that you’ve added to the Y coordinate

As an example, the default function expects data like this (array of arrays): [[0,0], [1,1], [2,2]] And has (a Javascript equivalent of) this accessor: int x(std::array<int, 2> d) {return d[1];}

If your data instead looked like this (array of Javascript objects with x and y values): [{x:0, y:0}, {x:1, y:1}, {x:2, y:2}] You might want to use an accessor like this: int x(JSONObject d) {return d.y();} Where JSONObject is a struct designed to hold necessary data from the Javascript object: struct JSONObject { EMP_BUILD_INTROSPECTIVE_TUPLE(int, x, int, y) };

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class RadialAreaGenerator

	#include <svg_shapes.h>Inherits from D3::RadialLineGenerator

Subclassed by D3::ArcGenerator, D3::ChordGenerator

Public Functions

	
RadialAreaGenerator()

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class RadialLineGenerator

	#include <svg_shapes.h>Inherits from D3::BaseLineGenerator

Subclassed by D3::RadialAreaGenerator

Public Functions

	
RadialLineGenerator()

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class SvgShapeGenerator

	#include <svg_shapes.h>A few particularly common shapes (circles, rectangles, and ellipses) have corresponding SVG elements that you can create directly. All other shapes (including lines) must be created by specifying a “path” describing their outline. Paths are defined with a mini-language [https://www.w3.org/TR/SVG/paths.html#PathData] that describes how you would draw the shape with a pen. You could write them by hand, but that’s rarely desirable (especially when you’re trying to systematically represent data). So d3 provides functions for generating functions that will convert data to paths. This is a base clase for all objects that manage such functions to inherit from. You probably want to instantiate derived versions, rather than this class directly.

Inherits from D3::D3_Base

Subclassed by D3::BaseLineGenerator, D3::SymbolGenerator

Public Functions

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

Protected Functions

	
SvgShapeGenerator()

	

	
class SymbolGenerator

	#include <svg_shapes.h>Generate symbols (“circle”, “cross” “diamond”, “square”, “triangle-down”, “triangle-up”). Often useful for making scatter plots.

Inherits from D3::SvgShapeGenerator

Public Functions

	
SymbolGenerator()

	

	
void SetType(std::string type)

	Set the type of symbol generated. Must be a C++ function, a string containing the name of a Javascript function (in the current window, d3, or emp namespaces), or a string specifying a type (“circle”, “cross” “diamond”, “square”, “triangle-down”, “triangle-up”).

	
void SetSize(int size)

	Set size in pixels to [size] - can be an int, a C++ function, or string naming a Javascript function in the current window, the emp namespace, or the d3 namespace.

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

Datasets

	
namespace D3

	
	
class ArcGenerator

	#include <svg_shapes.h>Inherits from D3::RadialAreaGenerator

Public Functions

	
ArcGenerator()

	

	
void SetCornerRadius(float radius)

	

	
void SetCornerRadius(std::string radius)

	

	
void SetPadRadius(float radius)

	

	
void SetPadRadius(std::string radius)

	

	
void SetPadAngle(float angle)

	

	
void SetPadAngle(std::string angle)

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class AreaGenerator

	#include <svg_shapes.h>An area is defined by two lines, with the area in between shaded.

Inherits from D3::LineGenerator

Public Functions

	
AreaGenerator()

	

	
template <typename T>

	
void SetX0(T x)

	

	
template <typename T>

	
void SetY0(T y)

	

	
void SetX0(std::string x)

	

	
void SetY0(std::string y)

	

	
template <typename T>

	
void SetX1(T x)

	

	
template <typename T>

	
void SetY1(T y)

	

	
void SetX1(std::string x)

	

	
void SetY1(std::string y)

	

	
template <typename X_SCALE_TYPE>

	
void AddXScale(X_SCALE_TYPE &scale)

	Often, when you’re drawing cartesion lines, you want to use a scale to transform numbers from range of your data to the range of pixels on your screen. Adding an X scale will cause the x-coordinates of all points on the line to be passed through that scale function. This stacks on top of whatever the current function for accessing x is (which means scales will also stack).

	
template <typename Y_SCALE_TYPE>

	
void AddYScale(Y_SCALE_TYPE &scale)

	Often, when you’re drawing cartesion lines, you want to use a scale to transform numbers from range of your data to the range of pixels on your screen. Adding a Y scale will cause the y-coordinates of all points on the line to be passed through that scale function. This stacks on top of whatever the current function for accessing y is (which means scales will also stack).

	
void SetX(std::string x)

	If the data that you are generating lines from is anything more complicated than a sequence of pairs of numbers, representing x and y (in that order), you need to tell the line generator how it should figure out what the x coordinate of a point in the line is. The parameter you pass to SetX should be instructions for doing so. It can either be a function (as a string indicating a Javascript function or as a literal C++ function) that accepts an element of the data sequence you are generating the line from, or it can be a constant, in which case the x coordinate of every point will be that constant.

Note: This function will re-set any scales that you’ve added to the X coordinate

As an example, the default function expects data like this (array of arrays): [[0,0], [1,1], [2,2]] And has (a Javascript equivalent of) this accessor: int x(std::array<int, 2> d) {return d[0];}

If your data instead looked like this (array of Javascript objects with x and y values): [{x:0, y:0}, {x:1, y:1}, {x:2, y:2}] You might want to use an accessor like this: int x(JSONObject d) {return d.x();} Where JSONObject is a struct designed to hold necessary data from the Javascript object: struct JSONObject { EMP_BUILD_INTROSPECTIVE_TUPLE(int, x, int, y) };

	
void SetY(std::string y)

	If the data that you are generating lines from is anything more complicated than a sequence of pairs of numbers, representing x and y (in that order), you need to tell the line generator how it should figure out what the y coordinate of a point in the line is. The parameter you pass to SetY should be instructions for doing so. It can either be a function (as a string indicating a Javascript function or as a literal C++ function) that accepts an element of the data sequence you are generating the line from, or it can be a constant, in which case the y coordinate of every point will be that constant.

Note: This function will re-set any scales that you’ve added to the Y coordinate

As an example, the default function expects data like this (array of arrays): [[0,0], [1,1], [2,2]] And has (a Javascript equivalent of) this accessor: int x(std::array<int, 2> d) {return d[1];}

If your data instead looked like this (array of Javascript objects with x and y values): [{x:0, y:0}, {x:1, y:1}, {x:2, y:2}] You might want to use an accessor like this: int x(JSONObject d) {return d.y();} Where JSONObject is a struct designed to hold necessary data from the Javascript object: struct JSONObject { EMP_BUILD_INTROSPECTIVE_TUPLE(int, x, int, y) };

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class BaseLineGenerator

	#include <svg_shapes.h>Base class for generating both cartesian and radial lines You don’t normally want to instantiate this - use LineGenerator or RadialLineGenerator instead.

Inherits from D3::SvgShapeGenerator

Subclassed by D3::LineGenerator, D3::RadialLineGenerator

Public Functions

	
BaseLineGenerator()

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class ChordGenerator

	#include <svg_shapes.h>Inherits from D3::RadialAreaGenerator

Subclassed by D3::DiagonalGenerator, D3::DiagonalRadialGenerator

Public Functions

	
ChordGenerator()

	

	
template <typename T>

	
void SetSource(T source)

	

	
void SetSource(std::string source)

	

	
template <typename T>

	
void SetTarget(T target)

	

	
void SetTarget(std::string target)

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class DiagonalGenerator

	#include <svg_shapes.h>Inherits from D3::ChordGenerator

Public Functions

	
DiagonalGenerator()

	

	
void SetProjection(std::string projection)

	

	
template <typename T>

	
void SetSource(T source)

	

	
void SetSource(std::string source)

	

	
template <typename T>

	
void SetTarget(T target)

	

	
void SetTarget(std::string target)

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class DiagonalRadialGenerator

	#include <svg_shapes.h>Inherits from D3::ChordGenerator

Public Functions

	
DiagonalRadialGenerator()

	

	
template <typename T>

	
void SetSource(T source)

	

	
void SetSource(std::string source)

	

	
template <typename T>

	
void SetTarget(T target)

	

	
void SetTarget(std::string target)

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class LineGenerator

	#include <svg_shapes.h>Generator for regular old (cartesian) lines.

Inherits from D3::BaseLineGenerator

Subclassed by D3::AreaGenerator

Public Functions

	
LineGenerator()

	

	
template <typename X_SCALE_TYPE>

	
void AddXScale(X_SCALE_TYPE &scale)

	Often, when you’re drawing cartesion lines, you want to use a scale to transform numbers from range of your data to the range of pixels on your screen. Adding an X scale will cause the x-coordinates of all points on the line to be passed through that scale function. This stacks on top of whatever the current function for accessing x is (which means scales will also stack).

	
template <typename Y_SCALE_TYPE>

	
void AddYScale(Y_SCALE_TYPE &scale)

	Often, when you’re drawing cartesion lines, you want to use a scale to transform numbers from range of your data to the range of pixels on your screen. Adding a Y scale will cause the y-coordinates of all points on the line to be passed through that scale function. This stacks on top of whatever the current function for accessing y is (which means scales will also stack).

	
void SetX(std::string x)

	If the data that you are generating lines from is anything more complicated than a sequence of pairs of numbers, representing x and y (in that order), you need to tell the line generator how it should figure out what the x coordinate of a point in the line is. The parameter you pass to SetX should be instructions for doing so. It can either be a function (as a string indicating a Javascript function or as a literal C++ function) that accepts an element of the data sequence you are generating the line from, or it can be a constant, in which case the x coordinate of every point will be that constant.

Note: This function will re-set any scales that you’ve added to the X coordinate

As an example, the default function expects data like this (array of arrays): [[0,0], [1,1], [2,2]] And has (a Javascript equivalent of) this accessor: int x(std::array<int, 2> d) {return d[0];}

If your data instead looked like this (array of Javascript objects with x and y values): [{x:0, y:0}, {x:1, y:1}, {x:2, y:2}] You might want to use an accessor like this: int x(JSONObject d) {return d.x();} Where JSONObject is a struct designed to hold necessary data from the Javascript object: struct JSONObject { EMP_BUILD_INTROSPECTIVE_TUPLE(int, x, int, y) };

	
void SetY(std::string y)

	If the data that you are generating lines from is anything more complicated than a sequence of pairs of numbers, representing x and y (in that order), you need to tell the line generator how it should figure out what the y coordinate of a point in the line is. The parameter you pass to SetY should be instructions for doing so. It can either be a function (as a string indicating a Javascript function or as a literal C++ function) that accepts an element of the data sequence you are generating the line from, or it can be a constant, in which case the y coordinate of every point will be that constant.

Note: This function will re-set any scales that you’ve added to the Y coordinate

As an example, the default function expects data like this (array of arrays): [[0,0], [1,1], [2,2]] And has (a Javascript equivalent of) this accessor: int x(std::array<int, 2> d) {return d[1];}

If your data instead looked like this (array of Javascript objects with x and y values): [{x:0, y:0}, {x:1, y:1}, {x:2, y:2}] You might want to use an accessor like this: int x(JSONObject d) {return d.y();} Where JSONObject is a struct designed to hold necessary data from the Javascript object: struct JSONObject { EMP_BUILD_INTROSPECTIVE_TUPLE(int, x, int, y) };

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class RadialAreaGenerator

	#include <svg_shapes.h>Inherits from D3::RadialLineGenerator

Subclassed by D3::ArcGenerator, D3::ChordGenerator

Public Functions

	
RadialAreaGenerator()

	

	
void SetInnerRadius(float radius)

	

	
void SetInnerRadius(std::string radius)

	

	
void SetOuterRadius(float radius)

	

	
void SetOuterRadius(std::string radius)

	

	
void SetStartAngle(float angle)

	

	
void SetStartAngle(std::string angle)

	

	
void SetEndAngle(float angle)

	

	
void SetEndAngle(std::string angle)

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class RadialLineGenerator

	#include <svg_shapes.h>Inherits from D3::BaseLineGenerator

Subclassed by D3::RadialAreaGenerator

Public Functions

	
RadialLineGenerator()

	

	
void SetRadius(float radius)

	

	
void SetRadius(std::string radius)

	

	
void SetAngle(float angle)

	

	
void SetAngle(std::string angle)

	

	
void SetInterpolate(std::string interpolate)

	Set the method used to interpolate between points in the line. For allowed options, see the d3 documntation [https://github.com/d3/d3-3.x-api-reference/blob/master/SVG-Shapes.md#line_interpolate]

	
void SetTension(float tension)

	If interpolation is “bundle”, “cardinal”, “cardinal-open”, or “cardinal-closed”, a tension parameter is used.

	
void SetDefined(std::string defined)

	Set a function indicating where the line is defined (i.e. valid) Can be a C++ function or a string indicating a Javascript function

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

	
class SvgShapeGenerator

	#include <svg_shapes.h>A few particularly common shapes (circles, rectangles, and ellipses) have corresponding SVG elements that you can create directly. All other shapes (including lines) must be created by specifying a “path” describing their outline. Paths are defined with a mini-language [https://www.w3.org/TR/SVG/paths.html#PathData] that describes how you would draw the shape with a pen. You could write them by hand, but that’s rarely desirable (especially when you’re trying to systematically represent data). So d3 provides functions for generating functions that will convert data to paths. This is a base clase for all objects that manage such functions to inherit from. You probably want to instantiate derived versions, rather than this class directly.

Inherits from D3::D3_Base

Subclassed by D3::BaseLineGenerator, D3::SymbolGenerator

Public Functions

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

Protected Functions

	
SvgShapeGenerator()

	

	
class SymbolGenerator

	#include <svg_shapes.h>Generate symbols (“circle”, “cross” “diamond”, “square”, “triangle-down”, “triangle-up”). Often useful for making scatter plots.

Inherits from D3::SvgShapeGenerator

Public Functions

	
SymbolGenerator()

	

	
void SetType(std::string type)

	Set the type of symbol generated. Must be a C++ function, a string containing the name of a Javascript function (in the current window, d3, or emp namespaces), or a string specifying a type (“circle”, “cross” “diamond”, “square”, “triangle-down”, “triangle-up”).

	
void SetSize(int size)

	Set size in pixels to [size] - can be an int, a C++ function, or string naming a Javascript function in the current window, the emp namespace, or the d3 namespace.

	
template <typename T, size_t SIZE>

	
std::string Generate(std::array<std::array<T, 2>, SIZE> data)

	Generate the string describing the path associated with [data] Assumes [data] is an array of 2-element arrays describing (x,y) coordinates and makes the line that connects them

	
template <typename T, std::size_t SIZE>

	
Selection DrawShape(std::array<std::array<T, 2>, SIZE> data, Selection s)

	Draws the path associated with [data] onto the [s] selection (must contain a single SVG) element).

	
Selection DrawShape(Dataset data, Selection s)

	DrawShape will also accept a D3::Dataset.

	
template <typename T, std::size_t SIZE, std::size_t SIZE2>

	
Selection DrawShape(std::array<std::array<std::array<T, 2>, SIZE>, SIZE2> data)

	If you pass a triple-nested array, it will be treated as an array of paths.

The Empirical Contributor Documentation

This section of the documentation is for people who are contributing (or who
would like to contribute to) the Emscripten codebase, either through
contributing code or by improving the documentation.

Contents:

	Getting started with Empirical development
	One-time Preparation

	Building Empirical and running the tests

	Claiming an issue and starting to develop

	After your first issue is successfully merged...

	Your second contribution...

	Pull request cleanup (commit squashing)

	Coding guidelines and review checklist
	C++ standards

	Guidelines based on Emscripten Limitations

	General Standards

	Checklist

	Empirical Documentation Documentation
	How to Comment for Doxygen Autodoc

	How to include Doxygen’s autodocs within Sphinx files

	How to add docs to the Sphinx documentation

	Guide to Testing in Empirical
	Running Tests

	Writing Tests

Index
Search Page

Getting started with Empirical development

Contents

	Getting started with Empirical development
	One-time Preparation

	Building Empirical and running the tests

	Claiming an issue and starting to develop

	After your first issue is successfully merged...

	Your second contribution...

	Pull request cleanup (commit squashing)

This document is intended to help those just getting started with Empirical
development. It details the initial one-time dependency installs and any
similar routines necessary to get started with development.

Start by making your own copy of Empirical and setting yourself up for
development; then, build Empirical and run the tests; and finally, claim
an issue and start developing!

If you’re unfamiliar with git and branching in particular, check out
the git-scm book [http://git-scm.com/book/en/Git-Branching].

One-time Preparation

	Install the dependencies.

OS X users

	Get a GitHub [http://github.com] account.

(We use GitHub to manage Empirical contributions.)

	Fork github.com/mercere99/Empirical [https://github.com/devosoft/Empirical].

Visit that page, and then click on the ‘fork’ button (upper right).

(This makes a copy of the Empirical source code in your own GitHub account.)

	Clone your copy of Empirical to your local development environment.

Your clone URL should look something like this:

https://github.com/bocajnotnef/Epirical.git

and the UNIX shell command should be:

git clone https://github.com/bocajnotnef/Empirical.git

(This makes a local copy of Empirical on your development machine.)

	Add a git reference to the Empirical repository:

cd Empirical
git remote add upstream https://github.com/mercere99/Empirical.git
cd ../

(This makes it easy for you to pull down the latest changes in the
main repository.)

	Create a virtual Python environment within which to work with
virtualenv [https://pypi.python.org/pypi/virtualenv]:

cd Empirical
python2.7 -m virtualenv third-party/env

This gives you a place to install packages necessary for running Empirical.

OS X users and others may need to download virtualenv first:

curl -O https://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.11.6.tar.gz
tar xzf virtualenv*
cd virtualenv-*; python2.7 virtualenv.py ../env; cd ..

Mac ports [https://www.macports.org/] users on the OS X platform can
install pip by execution from the command line:

sudo port install py27-pip

Homebrew [http://brew.sh/] users on the OS X platform will have pip
already installed

	Activate the virtualenv and install a few packages:

source third-party/env/bin/activate
make install-dependencies

(This installs Sphinx [http://sphinx-doc.org/], Breathe [https://breathe.readthedocs.org/en/latest/], and doxygen [http://www.stack.nl/~dimitri/doxygen/], packages we use to generate the
documentation for Empirical).

Building Empirical and running the tests

	Activate (or re-activate) the virtualenv
(necessary only for building documentation):

source third-party/env/bin/activate

You can run this many times without any ill effects.

(This puts you in the development environment.)

	Run the tests:

make test

Congratulations! You’re ready to develop!

Claiming an issue and starting to develop

	Find an open issue and claim it.

Once you’ve found an issue you like, make sure that no one has been
assigned to it (see “assignee”, bottom right near “notifications”).
Then, add a comment “I am working on this issue.” You’ve staked
your claim!

(We’re trying to avoid having multiple people working on the same issue.)

	In your local copy of the source code, update your master branch
from the main Empirical master branch:

git checkout master
git pull upstream master

(This pulls in all of the latest changes from whatever we’ve been
doing on dib-lab.)

It is possible that when you do a git pull you will get a “merge
conflict” – This is what happens when something changed in the branch you’re
pulling in in the same place you made a change in your local copy.

Git will complain loudly about merges and tell you specifically in which
files they occurred. If you open the file, you’ll see something vaugely
like this in the place where the merge occurred:

<<<<<<< HEAD
Changes made on the branch that is being merged into. In most cases,
this is the branch that you have currently checked out
=======
Changes made on the branch that is being merged in, almost certianly
master.
>>>>>>> abcde1234

Though there are a variety of tools to assist with resolving merge
conflicts they can be quite complicated at first glance and it is usually
easy enough to manually resolve the conflict.

To resolve the conflict you simply have to manually ‘meld’ the changes
together and remove the merge markers.

After this you’ll have to add and commit the merge just like any other set
of changes. It’s also recommended that you run tests.

	Create a new branch and link it to your fork on GitHub:

git checkout -b fix/brief_issue_description
git push -u origin fix/brief_issue_description

where you replace “brief_issue_description” with 2-3 words, separated
by underscores, describing the issue.

(This is the set of changes you’re going to ask to be merged into Empirical.)

	Make some changes and commit them.

Though this will largely be issue-dependent the basics of committing are
simple. After you’ve made a cohesive set of changes, run the command git
status. This will display a list of all the files git has noticed you
changed. A file in the ‘untracked’ section are files that haven’t existed
previously in the repository but git has noticed.

To commit changes you have to ‘stage’ them–this is done by issuing the
following command:

git add path/to/file

If you have a large quanity of changes and you don’t want to add each file
manually you can do git add --patch which will display each set of
changes to you before staging them for commit.

Once you have staged your changes, it’s time to make a commit:

git commit

Git will then open your default console text editor to write a commit
message – this is a short (typically 1-3 sentence) description of the
changes you’ve made. Please make your commit message informative but
concise – these messages become part of the ‘official’ history of the
project.

Once your changes have been committed, push them up to the remote branch:

git push

If this is your first commit on a new branch git will error out, telling
you the remote branch doesn’t exist – This is fine, as it will also provide
the command to create the branch. Copy/paste/run and you should be set.

	Periodically update your branch from the main Empirical master branch:

git pull upstream master

(This pulls in all of the latest changes from whatever we’ve been
doing on the upstream branch- important especially during periods of fast
change or for long-running pull requests.)

	Run the tests and/or build the docs before pushing to GitHub:

make doc test

Make sure they all pass!

	Push your branch to your own GitHub fork:

git push origin

(This pushes all of your changes to your own fork.)

	Repeat until you’re ready to merge your changes into “official” Empirical.

	Set up a Pull Request asking to merge things into the central Empirical
repository.

In a Web browser, go to your GitHub fork of Empirical, e.g.:

https://github.com/bocajnotnef/Empirical

and you will see a list of “recently pushed branches” just above the
source code listing. On the right side of that should be a
“Compare & pull request” green button. Click on it!

Now:

	add a descriptive title (“updated tests for XXX”)

	put the issue number in the comment (“fixes issue #532”)

then click “Create pull request.”

(This creates a new issue where we can all discuss your proposed
changes; the Empirical team will be automatically notified and you will
receive e-mail notifications as we add comments. See GitHub flow [http://scottchacon.com/2011/08/31/github-flow.html] for more
info.)

	Paste in the committer checklist from
Coding guidelines and review checklist
and, after its pasted in, check off as many of the boxes as you can.

	As you add new commits to address bugs or formatting issues, you can keep
pushing your changes to the pull request by doing:

git push origin

	If we request changes, return to the step “Make some changes and
commit them” and go from there. Any additional commits you make and
push to your branch will automatically be added to the pull request
(which is pretty dang cool.)

After your first issue is successfully merged...

You’re now an experienced GitHub user! Go ahead and take some more
tasks; you can broaden out beyond the low hanging fruit if you like.

Your second contribution...

Here are a few pointers on getting started on your second (or third,
or fourth, or nth contribution).

So, assuming you’ve found an issue you’d like to work on there are a
couple things to do to make sure your local copy of the repository is
ready for a new issue–specifically, we need to make sure it’s in sync
with the remote repository so you aren’t working on a old copy. So:

git checkout master
git fetch --all
git pull

This puts you on the latest master branch and pulls down updates from
GitHub with any changes that may have been made since your last
contribution (usually including the merge of your last
contribution). Then we merge those changes into your local copy of the
master branch.

Now, you can go back to Claiming an issue and starting to develop.

Pull request cleanup (commit squashing)

Submitters are invited to reduce the numbers of commits in their pull requests
either via git rebase -i upstream/master or this recipe:

git pull # make sure the local is up to date
git pull upstream master # get up to date
fix any merge conflicts
git status # sanity check
git diff upstream/master # does the diff look correct? (no merge markers)
git reset --soft upstream/master # un-commit the differences from dib/master
git status # sanity check
git commit --all # package all differences in one commit
git status # sanity check
git push # should fail
git push --force # override what's in GitHub's copy of the branch/pull request

Coding guidelines and review checklist

This document is for those who want to contribute code or documentation fixes
to the Empirical project and describes our coding standards as well as our
code review process.

This document has been adapted from the khmer project [https://khmer.readthedocs.org/en/v1.4.1/dev/coding-guidelines-and-review.html]

C++ standards

We use C++11 features throughout the project and currently that is the
de-facto standard version to use.

All code should be in header files for ease of inclusion into Emscripten
projects.

Files that define a single class should be named after that class. Files that
define sets of functions or multiple classes should have an all-lowercase name
that describes its contents.

All files and all directories must be levelized. This is partly enforced
through all files being headerfiles (and thus we cannot have circular
dependencies), but for clean coding practices (and easy of unit testing) whole
directories should not refer to each other bidirectionally either. See
Large-Scale C++ Software Design by John Lakos [http://www.amazon.com/Large-Scale-Software-Design-John-Lakos/dp/0201633620/]
for a strong pro-levelization argument.

In-code identifier formatting is always hard to settle upon. The guidelines
below are for consistency.

	Variable names should be all_lowercase, with words separated by underscores

	Function names should be CamelCase() unless they are meant to mimic a
function from the C++ standard library, at which point they can be
all_lowercase to fit in.

	User-defined types should be CamelCase

	Constants should be ALL_UPPERCASE, with words separated by underscores

	Template parameters should be ALL_UPPERCASE.

	Typedefs should match the casing of the types they are aliasing. For
example, a typedef on a template parameter might be all uppercase, while a
typedef on a user-defined type should be CamelCase.

Guidelines based on Emscripten Limitations

	Try to avoid use of 64-bit integers (that is, the “long long” type).
Emscripten has to emulate these and they can cause a notable slowdown.

	Do not rely on exceptions when possible. Emscripten is slow at dealing with
them and they can slow down code even when not triggered.

	Do not write multi-threaded code that uses shared state. Javascript cannot
(yet) handle such code and as such Emscripten cannot compile it. Note that
Emscripten does have experimental support of pthreads.

	Obviously, do not use any architecture-specific tricks, such as assuming
endianness, doing unaligned reads or writes, directly accessing registers,
etc.

Please see the Emscripten doc page [https://kripken.github.io/emscripten-site/docs/porting/guidelines/portability_guidelines.html]
for a full list.

General Standards

All plain-text files should have line widths of 100 characters or less unless
that is unsupported for the particular file format.

All contributions should have their spelling checked before being committed to
the codebase.

Vim users can run:

:setlocal spell spelllang=en_us

to automagically check the spelling within the file being edited.

Checklist

Copy and paste the following into a pull request comment when it is ready for
review:

- [] Is it mergeable?
- [] Did it pass the tests?
- [] Does 'make doc' succeed?
- [] If you added code, is it tested? Look at the output for 'make diff-cover'
- [] Was a spellchecker run on the source code and documentation after
 changes were made?

It’s expected that before requesting a code review the author of the PR will have checked all these
things on their own. It’s also expected that whomever reviews the PR will check these individual
items as well. Though the CI runs most of these and will pass/fail the PR accordingly it is not
infallible and the whole point of having a code review process is to have human eyes go over the
changes to the codebase.

Empirical Documentation Documentation

This is a quick primer on how to document things within Empirical.

Empirical makes use of the Sphinx documentation system based off of XML information gathered from
Doxygen via a plugin named Breathe. This means that Doxygen will automatically build documentation
for anything written in a C++ source file and Sphinx will be used to organize how that
documentation is displayed.

This primer will be broken up into two sections: 1) how to comment your code so that Doxygen can
automatically pull it out and 2) how to structure the rst files in the doc/ directory so that
Sphinx can construct the docs.

How to Comment for Doxygen Autodoc

Doxygen has an entire documentation section [https://www.stack.nl/~dimitri/doxygen/manual/docblocks.html] on how to comment your code.
We’ll provide a trimmed version here so that you can get started quickly.

Doxygen will examine all comments to determine if they are documentation comments or just code
comments. To make a documentation comment you must add either an extra * or /, depending on the
kind of comment:

/** This is a documentation comment
across several lines

This comment will be associated with the function immediately following.
*/
void somefunc(sometype param)
{

}

// this is a comment that doxygen will ignore
// note how it only has two leading slashes, like a normal comment
/// This is a comment that will be included in the documentation
/// Note the extra leading slash
/// Huzzah, documentation

One thing to note, Doxygen requires a minimum of three triple slash’d lines before a block is
considered documentation:

/// this line will be ignored
int somefunc() { return 5;}

///
/// This line will be included
///
void otherfunc() {;};

If you wish to make a more visible comment block, e.g. a header for a class, then you may do
something like the following:

/**//**
* Here is some text inside a visible block
***/

Note that Doxygen will view this as any other documentation comment and will not render it any
differently than a ‘normal’ documentation comment–it is simply more visible within the source
code.

How to include Doxygen’s autodocs within Sphinx files

Through the use of the Breathe extension it is incredibly easy to include Doxygen autodocs within
a Sphinx documentation file.

Suppose we have a c++ implementation file name potato.h that has inline comment documentation
as detailed above and that potato.h is a component of a module named ingredients that was just
created, and you wish to document them.

To do this you must create a file within the Empirical Library documentation source to hold the
module’s documentation:

touch doc/library/ingredients.rst

Within ingredients.rst you can make an introduction to the module, etc., and then add in the
sphinx directives to include autodocumentation. Your ingredients.rst file should look
something like the following:

This is the ingredients documentation!
======================================

This is a very short introduction.

potato.h

.. doxygenfile:: potato.h
 :project: Empirical

When the docs are built Sphinx will automatically pull the available documentation from Doxygen’s
XML files to construct the docs.

Additional directives exist to include autodocumentaiton from different levels, the full breakdown
of which is available within the Breathe Documentation [https://breathe.readthedocs.org/en/latest/directives.html].

How to add docs to the Sphinx documentation

Sphinx is the system used to generate the developer guide and similar reference documentation. A
primer to using ReStructured Text, the markup language used by Sphinx, can be found here [http://docutils.sourceforge.net/docs/user/rst/quickstart.html]. You can also look at any of the
.rst files in the doc/ directory to get a feel for how thinks work.

New documents must be included in the ‘toctree’ in the index.rst file for the directory the added
file lives in. For example, if you add CowFacts.rst to the CoolFacts/ directory you must add
CowFacts.rst to the toctree found in CoolFacts/CowFacts.rst:

Cool Facts
==========

A bunch of cool facts!

.. toctree ::
 AnteaterFacts
 BirdFacts
 CowFacts

To build the documentation, you must make sure you source the python virtual environment where
Sphinx lives. If you used the install-dependencies maketarget (recommended) then you should just
have to do source third-party/env/bin/activate and then make doc and the documentation will
regenerate.

Guide to Testing in Empirical

This document details how testing works in Empirical, both for writing and understanding tests.
Empirical makes use of the Catch testing framework [https://github.com/philsquared/Catch], the
documentation of which is available
here [https://github.com/philsquared/Catch/blob/master/docs/Readme.md].

Running Tests

	In the root directory of Empirical, use the maketarget test, like so::

	make test

The tests will compile and execute automatically, and you should see output that looks something
like this:

cd tests && make test
make[1]: Entering directory '/home/jgf/git/Empirical/tests'
g++ -std=c++11 test_driver.cc -o test.o
Execute tests
./test.o
===
All tests passed (562 assertions in 27 test cases)

If you wish to see detailed coverage data you can use the maketarget coverage:

make coverage

Again, the tests will compile (this time with coverage flags) and execute, generating coverage
data. This data will be analyzed and stuffed into helpful HTML files. You’ll see output that
initially looks like the normal tests, followed by a lot of output, and then:

Overall coverage rate:
lines......: 81.7% (946 of 1158 lines)
functions..: 87.0% (463 of 532 functions)

The HTML info will give breakdowns on line-by-line coverage on each file. It is highly reccomended
that you consult these to verify that code is well covered. To view these files, open
tests/html/index.html in your favorite browser.

Writing Tests

It is required that contributions to the Empirical library have test coverage. Though writing
tests can be a complex tast in some cases the Catch testing framework is extremely easy to use.

In general the best way to understand how to write tests is to look at the existing tests. I
recomend skimming through test_tools.cc for an overview.

If you are creating a new test file you will need to include the file you’ve made in the
test_driver.cc file. That is, suppose you create a file test_potatoes.cc. You will then need
to edit test_driver.cc so that it looks something like this:

#define CATCH_CONFIG_MAIN
#include "../third-party/catch/single_include/catch.hpp"
#include "test_tools.cc"
#include "test_geometry.cc"
#include "test_scholar.cc"
#include "test_potatoes.cc"

To write a test case you simply use the TEST_CASE macro provided by Catch:

TEST_CASE("Test name goes here", "[test classification here]")
{
 // body of test
}

Within a test case you can use the REQUIRE macro like an assert, to rquire certian conditions
within the test:

REQUIRE(1==1); // will pass, obviously
REQUIRE(1==0); // will fail, and Catch will complain

If a REQUIRE fails, Catch will expand it for you to show you what was compared. Supposing we
have a test case like the following:

TEST_CASE("testing tests", "[demo]")
{
 bool a = false, b = true;
 REQUIRE(a == b);
}

It would execute like so:

demo.cc:4: FAILED:
REQUIRE(a == b)
with expansion:
false == true

===
test cases: 1 | 1 failed
assertions: 1 | 1 failed

This allows for easier debugging of failed tests.

Catch provides several different frameworks for constructing test cases which are detailed within
their documentation [https://github.com/philsquared/Catch/blob/master/docs/tutorial.md].

Index

 D

D

 	
 	D3 (C++ type), [1], [2], [3], [4], [5]

 	D3::ArcGenerator (C++ class), [1]

 	D3::ArcGenerator::ArcGenerator (C++ function), [1]

 	D3::ArcGenerator::SetCornerRadius (C++ function), [1], [2], [3]

 	D3::ArcGenerator::SetPadAngle (C++ function), [1], [2], [3]

 	D3::ArcGenerator::SetPadRadius (C++ function), [1], [2], [3]

 	D3::AreaGenerator (C++ class), [1]

 	D3::AreaGenerator::AreaGenerator (C++ function), [1]

 	D3::AreaGenerator::SetX0 (C++ function), [1], [2], [3]

 	D3::AreaGenerator::SetX1 (C++ function), [1], [2], [3]

 	D3::AreaGenerator::SetY0 (C++ function), [1], [2], [3]

 	D3::AreaGenerator::SetY1 (C++ function), [1], [2], [3]

 	D3::Axis (C++ class)

 	D3::Axis::AdjustLabelOffset (C++ function)

 	D3::Axis::ApplyAxis (C++ function)

 	D3::Axis::Axis (C++ function)

 	D3::Axis::dom_id (C++ member)

 	D3::Axis::Draw (C++ function)

 	D3::Axis::GetScale (C++ function)

 	D3::Axis::group (C++ member)

 	D3::Axis::label (C++ member)

 	D3::Axis::label_offset (C++ member)

 	D3::Axis::Move (C++ function)

 	D3::Axis::Rescale (C++ function)

 	D3::Axis::scale (C++ member)

 	D3::Axis::SetInnerTickSize (C++ function)

 	D3::Axis::SetOrientation (C++ function)

 	D3::Axis::SetOuterTickSize (C++ function)

 	D3::Axis::SetScale (C++ function)

 	D3::Axis::SetTickFormat (C++ function)

 	D3::Axis::SetTickPadding (C++ function)

 	D3::Axis::SetTicks (C++ function)

 	D3::Axis::SetTickSize (C++ function)

 	D3::Axis::SetTickValues (C++ function)

 	D3::BaseLineGenerator (C++ class), [1]

 	D3::BaseLineGenerator::BaseLineGenerator (C++ function), [1]

 	D3::BaseLineGenerator::SetDefined (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

 	D3::BaseLineGenerator::SetInterpolate (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

 	D3::BaseLineGenerator::SetTension (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

 	D3::Category10Scale (C++ class)

 	D3::Category10Scale::Category10Scale (C++ function)

 	D3::Category20bScale (C++ class)

 	D3::Category20bScale::Category20bScale (C++ function)

 	D3::Category20cScale (C++ class)

 	D3::Category20cScale::Category20cScale (C++ function)

 	D3::Category20cScale::id (C++ member)

 	D3::Category20Scale (C++ class)

 	D3::Category20Scale::Category20Scale (C++ function)

 	D3::ChordGenerator (C++ class), [1]

 	D3::ChordGenerator::ChordGenerator (C++ function), [1]

 	D3::ChordGenerator::SetSource (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 	D3::ChordGenerator::SetTarget (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 	D3::D3_Base (C++ class)

 	D3::D3_Base::D3_Base (C++ function), [1]

 	D3::D3_Base::GetID (C++ function), [1], [2], [3], [4]

 	D3::D3_Base::id (C++ member), [1], [2], [3], [4]

 	D3::DiagonalGenerator (C++ class), [1]

 	D3::DiagonalGenerator::DiagonalGenerator (C++ function), [1]

 	D3::DiagonalGenerator::SetProjection (C++ function), [1]

 	D3::DiagonalRadialGenerator (C++ class), [1]

 	D3::DiagonalRadialGenerator::DiagonalRadialGenerator (C++ function), [1]

 	D3::DrawAxes (C++ function)

 	D3::FormatFunction (C++ class)

 	D3::FormatFunction::FormatFunction (C++ function)

 	D3::FormatFunction::operator() (C++ function)

 	D3::IdentityScale (C++ class)

 	D3::IdentityScale::IdentityScale (C++ function), [1]

 	D3::IdentityScale::Invert (C++ function), [1], [2], [3], [4]

 	D3::IdentityScale::SetTickFormat (C++ function), [1], [2], [3], [4]

 	D3::IdentityScale::SetTicks (C++ function), [1], [2], [3], [4]

 	D3::JSFunction (C++ class)

 	D3::JSFunction::JSFunction (C++ function), [1]

 	D3::JSFunction::operator() (C++ function)

 	D3::JSObject (C++ class)

 	D3::JSObject::JSObject (C++ function)

 	D3::LinearScale (C++ class)

 	D3::LinearScale::Clamp (C++ function), [1], [2], [3]

 	D3::LinearScale::LinearScale (C++ function), [1]

 	D3::LinearScale::Nice (C++ function), [1], [2], [3]

 	D3::LinearScale::SetInterpolate (C++ function), [1], [2], [3]

 	D3::LinearScale::SetRangeRound (C++ function), [1], [2], [3]

 	D3::LineGenerator (C++ class), [1]

 	D3::LineGenerator::AddXScale (C++ function), [1], [2], [3]

 	D3::LineGenerator::AddYScale (C++ function), [1], [2], [3]

 	D3::LineGenerator::LineGenerator (C++ function), [1]

 	D3::LineGenerator::SetX (C++ function), [1], [2], [3]

 	D3::LineGenerator::SetY (C++ function), [1], [2], [3]

 	D3::LogScale (C++ class)

 	D3::LogScale::LogScale (C++ function), [1]

 	D3::OrdinalScale (C++ class)

 	D3::OrdinalScale::OrdinalScale (C++ function), [1]

 	
 	D3::PowScale (C++ class)

 	D3::PowScale::PowScale (C++ function), [1]

 	D3::QuantileScale (C++ class)

 	D3::QuantileScale::QuantileScale (C++ function), [1]

 	D3::QuantizeScale (C++ class)

 	D3::QuantizeScale::InvertExtent (C++ function), [1], [2], [3]

 	D3::QuantizeScale::QuantizeScale (C++ function), [1]

 	D3::RadialAreaGenerator (C++ class), [1]

 	D3::RadialAreaGenerator::RadialAreaGenerator (C++ function), [1]

 	D3::RadialAreaGenerator::SetEndAngle (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]

 	D3::RadialAreaGenerator::SetInnerRadius (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]

 	D3::RadialAreaGenerator::SetOuterRadius (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]

 	D3::RadialAreaGenerator::SetStartAngle (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]

 	D3::RadialLineGenerator (C++ class), [1]

 	D3::RadialLineGenerator::RadialLineGenerator (C++ function), [1]

 	D3::RadialLineGenerator::SetAngle (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]

 	D3::RadialLineGenerator::SetRadius (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23]

 	D3::Scale (C++ class)

 	D3::Scale::ApplyScale (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	D3::Scale::Copy (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	D3::Scale::Scale (C++ function), [1], [2]

 	D3::Scale::SetDomain (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]

 	D3::Scale::SetRange (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19]

 	D3::Select (C++ function)

 	D3::SelectAll (C++ function)

 	D3::Selection (C++ class)

 	D3::Selection::AddToolTip (C++ function)

 	D3::Selection::Append (C++ function)

 	D3::Selection::Data (C++ function)

 	D3::Selection::Enter (C++ function)

 	D3::Selection::enter (C++ member)

 	D3::Selection::EnterAppend (C++ function)

 	D3::Selection::EnterInsert (C++ function)

 	D3::Selection::Exit (C++ function)

 	D3::Selection::exit (C++ member)

 	D3::Selection::ExitRemove (C++ function)

 	D3::Selection::Insert (C++ function)

 	D3::Selection::Interrupt (C++ function)

 	D3::Selection::MakeTransition (C++ function)

 	D3::Selection::Move (C++ function)

 	D3::Selection::On (C++ function)

 	D3::Selection::Order (C++ function)

 	D3::Selection::Rotate (C++ function)

 	D3::Selection::Selection (C++ function), [1], [2]

 	D3::Selection::Sort (C++ function)

 	D3::Selection::~Selection (C++ function)

 	D3::SelectionOrTransition (C++ class)

 	D3::SelectionOrTransition::Call (C++ function), [1], [2]

 	D3::SelectionOrTransition::Each (C++ function), [1], [2], [3], [4], [5]

 	D3::SelectionOrTransition::Empty (C++ function), [1], [2]

 	D3::SelectionOrTransition::Filter (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetAttrDouble (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetAttrInt (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetAttrString (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetHtml (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetPropertyDouble (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetPropertyInt (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetPropertyString (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetStyleDouble (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetStyleInt (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetStyleString (C++ function), [1], [2]

 	D3::SelectionOrTransition::GetText (C++ function), [1], [2]

 	D3::SelectionOrTransition::Remove (C++ function), [1], [2]

 	D3::SelectionOrTransition::Select (C++ function), [1], [2]

 	D3::SelectionOrTransition::SelectAll (C++ function), [1], [2]

 	D3::SelectionOrTransition::SelectionOrTransition (C++ function), [1]

 	D3::SelectionOrTransition::SetAttr (C++ function), [1], [2]

 	D3::SelectionOrTransition::SetClassed (C++ function), [1], [2]

 	D3::SelectionOrTransition::SetHtml (C++ function), [1], [2]

 	D3::SelectionOrTransition::SetProperty (C++ function), [1], [2]

 	D3::SelectionOrTransition::SetStyle (C++ function), [1], [2]

 	D3::SelectionOrTransition::SetText (C++ function), [1], [2]

 	D3::SelectionOrTransition::Size (C++ function), [1], [2]

 	D3::ShapesFromData (C++ function), [1]

 	D3::SvgShapeGenerator (C++ class), [1]

 	D3::SvgShapeGenerator::DrawShape (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65]

 	D3::SvgShapeGenerator::Generate (C++ function), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]

 	D3::SvgShapeGenerator::SvgShapeGenerator (C++ function), [1]

 	D3::SymbolGenerator (C++ class), [1]

 	D3::SymbolGenerator::SetSize (C++ function), [1]

 	D3::SymbolGenerator::SetType (C++ function), [1]

 	D3::SymbolGenerator::SymbolGenerator (C++ function), [1]

 	D3::ThresholdScale (C++ class)

 	D3::ThresholdScale::ThresholdScale (C++ function), [1]

 	D3::TimeScale (C++ class)

 	D3::TimeScale::TimeScale (C++ function), [1]

 	D3::ToolTip (C++ class)

 	D3::ToolTip::SetHtml (C++ function)

 	D3::ToolTip::ToolTip (C++ function), [1]

 	D3::Transition (C++ class)

 	D3::Transition::NewTransition (C++ function)

 	D3::Transition::Transition (C++ function), [1]

 _static/up-pressed.png

_static/comment-bright.png

_images/d3_file_tree.png
some
directon

Empirical

example

/\

style_sheet. css | my_program. x' examptejsonl my,htmthtmt'

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

_images/python3HTTPserver.png
emily@EmilyLaptop ~ $ python3 -m http.server
Serving HTTP on ©.0.0.6 port 8060 .

_images/SimpleHTTPServer.png
emily@EmilyLaptop ~ $ python2 -m SimpleHTTPServer
serving HTTP on ©.6.0.0 port 8060 ...

_images/DOM.png

nav.xhtml

 Table of Contents

 		Empirical – A library of tools for scientific software development

 		The Empirical Library Documentation

 		Doxygen

 		The Empirical D3 Wrapper Documentation

 		Using Empirical's D3.js Wrapper

 		A Minimal Example

 		Writing Your Own Visualization

 		Under the Hood (for the curious, developers, and people trying to do weird stuff)

 		D3 Wrapper API

 		The Empirical Contributor Documentation

 		Getting started with Empirical development

 		One-time Preparation

 		Building Empirical and running the tests

 		Claiming an issue and starting to develop

 		After your first issue is successfully merged...

 		Your second contribution...

 		Pull request cleanup (commit squashing)

 		Coding guidelines and review checklist

 		C++ standards

 		Guidelines based on Emscripten Limitations

 		General Standards

 		Checklist

 		Empirical Documentation Documentation

 		How to Comment for Doxygen Autodoc

 		How to include Doxygen's autodocs within Sphinx files

 		How to add docs to the Sphinx documentation

 		Guide to Testing in Empirical

 		Running Tests

 		Writing Tests

_static/plus.png

_static/down-pressed.png

_static/comment.png

